Join IDNLearn.com and start exploring the answers to your most pressing questions. Get comprehensive and trustworthy answers to all your questions from our knowledgeable community members.

The chemical equation below shows the decomposition of ammonium nitrate [tex]$\left( NH_4NO_3 \right)$[/tex]:
[tex]$
NH_4NO_3 \rightarrow N_2O + 2H_2O
$[/tex]

A chemist who is performing this reaction starts with 160.1 g of [tex]$NH_4NO_3$[/tex]. The molar mass of [tex]$NH_4NO_3$[/tex] is [tex]$80.03 \, \text{g/mol}$[/tex]; the molar mass of water [tex]$\left( H_2O \right)$[/tex] is [tex]$18.01 \, \text{g/mol}$[/tex].

What mass, in grams, of [tex]$H_2O$[/tex] is produced?

A. 9.01 grams
B. 18.01 grams
C. 36.03 grams
D. 72.06 grams


Sagot :

To determine the mass of water ([tex]\(H_2O\)[/tex]) produced from the decomposition of ammonium nitrate ([tex]\(NH_4NO_3\)[/tex]), we will follow a step-by-step stoichiometric process:

1. Calculate the number of moles of [tex]\(NH_4NO_3\)[/tex]:

Given:
- Mass of [tex]\(NH_4NO_3\)[/tex] = 160.1 grams
- Molar mass of [tex]\(NH_4NO_3\)[/tex] = 80.03 g/mol

Number of moles of [tex]\(NH_4NO_3\)[/tex] is calculated as:
[tex]\[ \text{moles of } NH_4NO_3 = \frac{\text{mass of } NH_4NO_3}{\text{molar mass of } NH_4NO_3} \][/tex]
[tex]\[ \text{moles of } NH_4NO_3 = \frac{160.1 \text{ grams}}{80.03 \text{ g/mol}} \approx 2.0005 \text{ moles} \][/tex]

2. Use the stoichiometry of the reaction to find the number of moles of [tex]\(H_2O\)[/tex] produced:

The balanced chemical equation is:
[tex]\[ NH_4NO_3 \rightarrow N_2O + 2 H_2O \][/tex]
According to the stoichiometry, 1 mole of [tex]\(NH_4NO_3\)[/tex] produces 2 moles of [tex]\(H_2O\)[/tex]. Therefore:
[tex]\[ \text{moles of } H_2O = \text{moles of } NH_4NO_3 \times 2 \][/tex]
[tex]\[ \text{moles of } H_2O = 2.0005 \text{ moles} \times 2 \approx 4.001 \text{ moles} \][/tex]

3. Calculate the mass of [tex]\(H_2O\)[/tex] produced:

Given:
- Molar mass of [tex]\(H_2O\)[/tex] = 18.01 g/mol

Mass of [tex]\(H_2O\)[/tex] is calculated as:
[tex]\[ \text{mass of } H_2O = \text{moles of } H_2O \times \text{molar mass of } H_2O \][/tex]
[tex]\[ \text{mass of } H_2O = 4.001 \text{ moles} \times 18.01 \text{ g/mol} \approx 72.06 \text{ grams} \][/tex]

Therefore, the mass of [tex]\(H_2O\)[/tex] produced is:

[tex]\(\boxed{72.06 \, \text{grams}}\)[/tex]