Get the answers you've been searching for with IDNLearn.com. Our experts are ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
To solve the problem, we need to determine the correct statement describing the pre-image segment [tex]\( \overline{YZ} \)[/tex] after a dilation transformation from the segment [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex].
1. Calculate the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex]:
The endpoints of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] are given as [tex]\( Y^{\prime}(0, 3) \)[/tex] and [tex]\( Z^{\prime}(-6, 3) \)[/tex].
The length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is calculated using the distance formula:
[tex]\[ \text{Length of } \overline{Y^{\prime} Z^{\prime}} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Plugging in the coordinates [tex]\( Y^{\prime}(0, 3) \)[/tex] and [tex]\( Z^{\prime}(-6, 3) \)[/tex]:
[tex]\[ \text{Length of } \overline{Y^{\prime} Z^{\prime}} = \sqrt{(-6 - 0)^2 + (3 - 3)^2} = \sqrt{(-6)^2 + 0^2} = \sqrt{36} = 6 \][/tex]
Therefore, the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is [tex]\( 6 \)[/tex] units.
2. Determine the dilation transformation:
The problem states that [tex]\( \overline{YZ} \)[/tex] was dilated by a scale factor of [tex]\( 3 \)[/tex] from the origin.
Therefore, if the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is [tex]\( 6 \)[/tex], then the length of [tex]\( \overline{YZ} \)[/tex] after dilation will be:
[tex]\[ \text{Length of } \overline{YZ} = 6 \times 3 = 18 \][/tex]
3. Verify the coordinates of [tex]\( \overline{YZ} \)[/tex]:
- Option 1: [tex]\( \overline{YZ} \)[/tex] is located at [tex]\( Y(0, 9) \)[/tex] and [tex]\( Z(-18, 9) \)[/tex]
Length: [tex]\( \sqrt{(-18 - 0)^2 + (9 - 9)^2} = \sqrt{(-18)^2 + 0^2} = \sqrt{324} = 18 \)[/tex]
This matches the calculated length of [tex]\( 18 \)[/tex] and also accurately reflects that [tex]\( \overline{YZ} \)[/tex] is three times the size of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex].
- Other options:
- Option 2: [tex]\( Y(0, 3) \)[/tex] and [tex]\( Z(-6, 3) \)[/tex]
This matches [tex]\( Y^{\prime} \)[/tex] and [tex]\( Z^{\prime} \)[/tex], so it would be the same size as [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex], not three times.
- Option 3: [tex]\( Y(0, 1.5) \)[/tex] and [tex]\( Z(-3, 1.5) \)[/tex]
Length: [tex]\( \sqrt{(-3 - 0)^2 + (1.5 - 1.5)^2} = 3 \)[/tex], which is one-half, not three times.
- Option 4: [tex]\( Y(0, 1) \)[/tex] and [tex]\( Z(-2, 1) \)[/tex]
Length: [tex]\( \sqrt{(-2 - 0)^2 + (1 - 1)^2} = 2 \)[/tex], which is one-third, not three times.
Therefore, the correct statement is:
[tex]\[ \overline{YZ} \text{ is located at } Y(0, 9) \text{ and } Z(-18, 9) \text{ and is three times the size of } \overline{Y^{\prime} Z^{\prime}} \][/tex]
So the correct answer is option 1.
1. Calculate the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex]:
The endpoints of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] are given as [tex]\( Y^{\prime}(0, 3) \)[/tex] and [tex]\( Z^{\prime}(-6, 3) \)[/tex].
The length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is calculated using the distance formula:
[tex]\[ \text{Length of } \overline{Y^{\prime} Z^{\prime}} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Plugging in the coordinates [tex]\( Y^{\prime}(0, 3) \)[/tex] and [tex]\( Z^{\prime}(-6, 3) \)[/tex]:
[tex]\[ \text{Length of } \overline{Y^{\prime} Z^{\prime}} = \sqrt{(-6 - 0)^2 + (3 - 3)^2} = \sqrt{(-6)^2 + 0^2} = \sqrt{36} = 6 \][/tex]
Therefore, the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is [tex]\( 6 \)[/tex] units.
2. Determine the dilation transformation:
The problem states that [tex]\( \overline{YZ} \)[/tex] was dilated by a scale factor of [tex]\( 3 \)[/tex] from the origin.
Therefore, if the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is [tex]\( 6 \)[/tex], then the length of [tex]\( \overline{YZ} \)[/tex] after dilation will be:
[tex]\[ \text{Length of } \overline{YZ} = 6 \times 3 = 18 \][/tex]
3. Verify the coordinates of [tex]\( \overline{YZ} \)[/tex]:
- Option 1: [tex]\( \overline{YZ} \)[/tex] is located at [tex]\( Y(0, 9) \)[/tex] and [tex]\( Z(-18, 9) \)[/tex]
Length: [tex]\( \sqrt{(-18 - 0)^2 + (9 - 9)^2} = \sqrt{(-18)^2 + 0^2} = \sqrt{324} = 18 \)[/tex]
This matches the calculated length of [tex]\( 18 \)[/tex] and also accurately reflects that [tex]\( \overline{YZ} \)[/tex] is three times the size of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex].
- Other options:
- Option 2: [tex]\( Y(0, 3) \)[/tex] and [tex]\( Z(-6, 3) \)[/tex]
This matches [tex]\( Y^{\prime} \)[/tex] and [tex]\( Z^{\prime} \)[/tex], so it would be the same size as [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex], not three times.
- Option 3: [tex]\( Y(0, 1.5) \)[/tex] and [tex]\( Z(-3, 1.5) \)[/tex]
Length: [tex]\( \sqrt{(-3 - 0)^2 + (1.5 - 1.5)^2} = 3 \)[/tex], which is one-half, not three times.
- Option 4: [tex]\( Y(0, 1) \)[/tex] and [tex]\( Z(-2, 1) \)[/tex]
Length: [tex]\( \sqrt{(-2 - 0)^2 + (1 - 1)^2} = 2 \)[/tex], which is one-third, not three times.
Therefore, the correct statement is:
[tex]\[ \overline{YZ} \text{ is located at } Y(0, 9) \text{ and } Z(-18, 9) \text{ and is three times the size of } \overline{Y^{\prime} Z^{\prime}} \][/tex]
So the correct answer is option 1.
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com has the solutions you’re looking for. Thanks for visiting, and see you next time for more reliable information.