IDNLearn.com: Your trusted source for accurate and reliable answers. Find the solutions you need quickly and accurately with help from our knowledgeable community.
Sagot :
To solve the problem, we need to determine the correct statement describing the pre-image segment [tex]\( \overline{YZ} \)[/tex] after a dilation transformation from the segment [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex].
1. Calculate the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex]:
The endpoints of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] are given as [tex]\( Y^{\prime}(0, 3) \)[/tex] and [tex]\( Z^{\prime}(-6, 3) \)[/tex].
The length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is calculated using the distance formula:
[tex]\[ \text{Length of } \overline{Y^{\prime} Z^{\prime}} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Plugging in the coordinates [tex]\( Y^{\prime}(0, 3) \)[/tex] and [tex]\( Z^{\prime}(-6, 3) \)[/tex]:
[tex]\[ \text{Length of } \overline{Y^{\prime} Z^{\prime}} = \sqrt{(-6 - 0)^2 + (3 - 3)^2} = \sqrt{(-6)^2 + 0^2} = \sqrt{36} = 6 \][/tex]
Therefore, the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is [tex]\( 6 \)[/tex] units.
2. Determine the dilation transformation:
The problem states that [tex]\( \overline{YZ} \)[/tex] was dilated by a scale factor of [tex]\( 3 \)[/tex] from the origin.
Therefore, if the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is [tex]\( 6 \)[/tex], then the length of [tex]\( \overline{YZ} \)[/tex] after dilation will be:
[tex]\[ \text{Length of } \overline{YZ} = 6 \times 3 = 18 \][/tex]
3. Verify the coordinates of [tex]\( \overline{YZ} \)[/tex]:
- Option 1: [tex]\( \overline{YZ} \)[/tex] is located at [tex]\( Y(0, 9) \)[/tex] and [tex]\( Z(-18, 9) \)[/tex]
Length: [tex]\( \sqrt{(-18 - 0)^2 + (9 - 9)^2} = \sqrt{(-18)^2 + 0^2} = \sqrt{324} = 18 \)[/tex]
This matches the calculated length of [tex]\( 18 \)[/tex] and also accurately reflects that [tex]\( \overline{YZ} \)[/tex] is three times the size of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex].
- Other options:
- Option 2: [tex]\( Y(0, 3) \)[/tex] and [tex]\( Z(-6, 3) \)[/tex]
This matches [tex]\( Y^{\prime} \)[/tex] and [tex]\( Z^{\prime} \)[/tex], so it would be the same size as [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex], not three times.
- Option 3: [tex]\( Y(0, 1.5) \)[/tex] and [tex]\( Z(-3, 1.5) \)[/tex]
Length: [tex]\( \sqrt{(-3 - 0)^2 + (1.5 - 1.5)^2} = 3 \)[/tex], which is one-half, not three times.
- Option 4: [tex]\( Y(0, 1) \)[/tex] and [tex]\( Z(-2, 1) \)[/tex]
Length: [tex]\( \sqrt{(-2 - 0)^2 + (1 - 1)^2} = 2 \)[/tex], which is one-third, not three times.
Therefore, the correct statement is:
[tex]\[ \overline{YZ} \text{ is located at } Y(0, 9) \text{ and } Z(-18, 9) \text{ and is three times the size of } \overline{Y^{\prime} Z^{\prime}} \][/tex]
So the correct answer is option 1.
1. Calculate the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex]:
The endpoints of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] are given as [tex]\( Y^{\prime}(0, 3) \)[/tex] and [tex]\( Z^{\prime}(-6, 3) \)[/tex].
The length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is calculated using the distance formula:
[tex]\[ \text{Length of } \overline{Y^{\prime} Z^{\prime}} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Plugging in the coordinates [tex]\( Y^{\prime}(0, 3) \)[/tex] and [tex]\( Z^{\prime}(-6, 3) \)[/tex]:
[tex]\[ \text{Length of } \overline{Y^{\prime} Z^{\prime}} = \sqrt{(-6 - 0)^2 + (3 - 3)^2} = \sqrt{(-6)^2 + 0^2} = \sqrt{36} = 6 \][/tex]
Therefore, the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is [tex]\( 6 \)[/tex] units.
2. Determine the dilation transformation:
The problem states that [tex]\( \overline{YZ} \)[/tex] was dilated by a scale factor of [tex]\( 3 \)[/tex] from the origin.
Therefore, if the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is [tex]\( 6 \)[/tex], then the length of [tex]\( \overline{YZ} \)[/tex] after dilation will be:
[tex]\[ \text{Length of } \overline{YZ} = 6 \times 3 = 18 \][/tex]
3. Verify the coordinates of [tex]\( \overline{YZ} \)[/tex]:
- Option 1: [tex]\( \overline{YZ} \)[/tex] is located at [tex]\( Y(0, 9) \)[/tex] and [tex]\( Z(-18, 9) \)[/tex]
Length: [tex]\( \sqrt{(-18 - 0)^2 + (9 - 9)^2} = \sqrt{(-18)^2 + 0^2} = \sqrt{324} = 18 \)[/tex]
This matches the calculated length of [tex]\( 18 \)[/tex] and also accurately reflects that [tex]\( \overline{YZ} \)[/tex] is three times the size of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex].
- Other options:
- Option 2: [tex]\( Y(0, 3) \)[/tex] and [tex]\( Z(-6, 3) \)[/tex]
This matches [tex]\( Y^{\prime} \)[/tex] and [tex]\( Z^{\prime} \)[/tex], so it would be the same size as [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex], not three times.
- Option 3: [tex]\( Y(0, 1.5) \)[/tex] and [tex]\( Z(-3, 1.5) \)[/tex]
Length: [tex]\( \sqrt{(-3 - 0)^2 + (1.5 - 1.5)^2} = 3 \)[/tex], which is one-half, not three times.
- Option 4: [tex]\( Y(0, 1) \)[/tex] and [tex]\( Z(-2, 1) \)[/tex]
Length: [tex]\( \sqrt{(-2 - 0)^2 + (1 - 1)^2} = 2 \)[/tex], which is one-third, not three times.
Therefore, the correct statement is:
[tex]\[ \overline{YZ} \text{ is located at } Y(0, 9) \text{ and } Z(-18, 9) \text{ and is three times the size of } \overline{Y^{\prime} Z^{\prime}} \][/tex]
So the correct answer is option 1.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.