Get the answers you need from a community of experts on IDNLearn.com. Our platform is designed to provide trustworthy and thorough answers to any questions you may have.
Sagot :
Sure, let's walk through the step-by-step solution to calculate the molar mass of the protein given the problem's parameters.
### Given Data:
1. [tex]\( \text{Mass of protein} (m) = 3.5 \)[/tex] g
2. [tex]\( \text{Volume of solution} (V) = 0.05 \)[/tex] L
3. [tex]\( \text{Osmotic pressure} (\pi) = 0.035 \)[/tex] atm
4. [tex]\( \text{Temperature} (T) = 310 \)[/tex] K
5. [tex]\( \text{Gas constant} (R) = 0.0821 \)[/tex] L atm K[tex]\(^{-1}\)[/tex] mol[tex]\(^{-1}\)[/tex]
### Step-by-Step Calculation:
#### Step 1: Calculate the number of moles ([tex]\( n \)[/tex]) of the protein
Using the formula for osmotic pressure:
[tex]\[ \pi = \frac{n}{V} RT \][/tex]
Rearrange the formula to solve for the number of moles ([tex]\( n \)[/tex]):
[tex]\[ n = \frac{\pi V}{RT} \][/tex]
Plug in the given values:
[tex]\[ n = \frac{0.035 \text{ atm} \times 0.05 \text{ L}}{0.0821 \text{ L atm K}^{-1} \text{ mol}^{-1} \times 310 \text{ K}} \][/tex]
Calculate:
[tex]\[ n = \frac{0.00175 \text{ atm L}}{25.451 \text{ L atm K}^{-1} \text{ mol}^{-1}} \][/tex]
[tex]\[ n \approx 6.875957722682803 \times 10^{-5} \text{ mol} \][/tex]
#### Step 2: Calculate the molar mass ([tex]\( M \)[/tex]) of the protein
The molar mass ([tex]\( M \)[/tex]) is the mass of the solute ([tex]\( m \)[/tex]) divided by the number of moles ([tex]\( n \)[/tex]):
[tex]\[ M = \frac{m}{n} \][/tex]
Plug in the given values:
[tex]\[ M = \frac{3.5 \text{ g}}{6.875957722682803 \times 10^{-5} \text{ mol}} \][/tex]
Calculate:
[tex]\[ M \approx 50901.99999999999 \text{ g/mol} \][/tex]
### Conclusion:
The molar mass of the protein is approximately 50,902 g/mol.
### Given Data:
1. [tex]\( \text{Mass of protein} (m) = 3.5 \)[/tex] g
2. [tex]\( \text{Volume of solution} (V) = 0.05 \)[/tex] L
3. [tex]\( \text{Osmotic pressure} (\pi) = 0.035 \)[/tex] atm
4. [tex]\( \text{Temperature} (T) = 310 \)[/tex] K
5. [tex]\( \text{Gas constant} (R) = 0.0821 \)[/tex] L atm K[tex]\(^{-1}\)[/tex] mol[tex]\(^{-1}\)[/tex]
### Step-by-Step Calculation:
#### Step 1: Calculate the number of moles ([tex]\( n \)[/tex]) of the protein
Using the formula for osmotic pressure:
[tex]\[ \pi = \frac{n}{V} RT \][/tex]
Rearrange the formula to solve for the number of moles ([tex]\( n \)[/tex]):
[tex]\[ n = \frac{\pi V}{RT} \][/tex]
Plug in the given values:
[tex]\[ n = \frac{0.035 \text{ atm} \times 0.05 \text{ L}}{0.0821 \text{ L atm K}^{-1} \text{ mol}^{-1} \times 310 \text{ K}} \][/tex]
Calculate:
[tex]\[ n = \frac{0.00175 \text{ atm L}}{25.451 \text{ L atm K}^{-1} \text{ mol}^{-1}} \][/tex]
[tex]\[ n \approx 6.875957722682803 \times 10^{-5} \text{ mol} \][/tex]
#### Step 2: Calculate the molar mass ([tex]\( M \)[/tex]) of the protein
The molar mass ([tex]\( M \)[/tex]) is the mass of the solute ([tex]\( m \)[/tex]) divided by the number of moles ([tex]\( n \)[/tex]):
[tex]\[ M = \frac{m}{n} \][/tex]
Plug in the given values:
[tex]\[ M = \frac{3.5 \text{ g}}{6.875957722682803 \times 10^{-5} \text{ mol}} \][/tex]
Calculate:
[tex]\[ M \approx 50901.99999999999 \text{ g/mol} \][/tex]
### Conclusion:
The molar mass of the protein is approximately 50,902 g/mol.
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.