Connect with experts and get insightful answers to your questions on IDNLearn.com. Whether your question is simple or complex, our community is here to provide detailed and trustworthy answers quickly and effectively.

47. Calculate the [tex]$\left[ H_3O^+ \right]$[/tex] of a solution.

a) [tex]$pH = 5$[/tex]

b) [tex]$pH = 3.2$[/tex]

c) [tex]$pOH = 9.3$[/tex]

d) [tex]$pOH = 11.3$[/tex]

48. Calculate the [tex]$[ OH^- ]$[/tex] or [tex]$\left[ H_3O^+ \right]$[/tex] of a solution given the following. (Remember [tex]$K_w = 1 \times 10^{-14} M^2$[/tex])

a) [tex]$\left[ H_3O^+ \right] = 1 \times 10^{-6} M$[/tex]

b) [tex]$\left[ H_3O^+ \right] = 1 \times 10^{-1} M$[/tex]

c) [tex]$[ OH^- ] = 1 \times 10^{-12} M$[/tex]

49. Will a high or low pH result from the following?

a) Low [tex]$\left[ H_3O^+ \right]$[/tex]

b) High [tex]$\left[ H_3O^+ \right]$[/tex]

c) Low [tex]$[ OH^- ]$[/tex]

d) High [tex]$[ OH^- ]$[/tex]


Sagot :

Certainly! Let's walk through the solutions step-by-step for each part of the question.

### 47. Calculate the [tex]\([H_3O^+]\)[/tex] of a solution:

#### (a) [tex]\( pH = 5 \)[/tex]
To find the hydronium ion concentration [tex]\([H_3O^+]\)[/tex], we use the formula:

[tex]\[ [H_3O^+] = 10^{-pH} \][/tex]

For [tex]\( pH = 5 \)[/tex]:

[tex]\[ [H_3O^+] = 10^{-5} = 1 \times 10^{-5} \, M \][/tex]

#### (b) [tex]\( pH = 3.2 \)[/tex]
Again, using the formula:

[tex]\[ [H_3O^+] = 10^{-pH} \][/tex]

For [tex]\( pH = 3.2 \)[/tex]:

[tex]\[ [H_3O^+] \approx 10^{-3.2} \approx 0.000630957344480193 \, M \][/tex]

#### (c) [tex]\( pOH = 9.3 \)[/tex]
First, we need to convert [tex]\( pOH \)[/tex] to [tex]\( pH \)[/tex] using the relationship:

[tex]\[ pH + pOH = 14 \][/tex]

Thus,

[tex]\[ pH = 14 - pOH = 14 - 9.3 = 4.7 \][/tex]

Then, using the formula:

[tex]\[ [H_3O^+] = 10^{-pH} \][/tex]

[tex]\[ [H_3O^+] \approx 10^{-4.7} \approx 5.011872336272714 \times 10^{-10} \, M \][/tex]

#### (d) [tex]\( pOH = 11.3 \)[/tex]
Similarly, convert [tex]\( pOH \)[/tex] to [tex]\( pH \)[/tex]:

[tex]\[ pH = 14 - pOH = 14 - 11.3 = 2.7 \][/tex]

Then, using the formula:

[tex]\[ [H_3O^+] = 10^{-pH} \][/tex]

[tex]\[ [H_3O^+] \approx 10^{-2.7} \approx 5.011872336272715 \times 10^{-12} \, M \][/tex]

### 48. Calculate the [tex]\([OH^-]\)[/tex] or [tex]\([H_3O^+]\)[/tex] of a solution given the following. (Remember [tex]\( K_w = 1 \times 10^{-14} \, M^2 \)[/tex])

#### (a) [tex]\([H_3O^+] = 1 \times 10^{-6} \, M\)[/tex]
Using the water dissociation constant [tex]\( K_w = [H_3O^+][OH^-] \)[/tex]:

[tex]\[ [OH^-] = \frac{K_w}{[H_3O^+]} = \frac{1 \times 10^{-14}}{1 \times 10^{-6}} = 1 \times 10^{-8} \, M \][/tex]

#### (b) [tex]\([H_3O^+] = 1 \times 10^{-1} \, M\)[/tex]
Similarly, using the same relationship:

[tex]\[ [OH^-] = \frac{K_w}{[H_3O^+]} = \frac{1 \times 10^{-14}}{1 \times 10^{-1}} = 1 \times 10^{-13} \, M \][/tex]

#### (c) [tex]\([OH^-] = 1 \times 10^{-12} \, M\)[/tex]
Again, using [tex]\( K_w \)[/tex]:

[tex]\[ [H_3O^+] = \frac{K_w}{[OH^-]} = \frac{1 \times 10^{-14}}{1 \times 10^{-12}} = 1 \times 10^{-2} \, M \][/tex]

### 49. Will a high or low pH result from the following?

#### (a) Low [tex]\([H_3O^+]\)[/tex]
A low concentration of [tex]\([H_3O^+]\)[/tex] means the solution is less acidic, which results in a high pH. Thus,

[tex]\[ \text{High pH} \][/tex]

#### (b) High [tex]\([H_3O^+]\)[/tex]
A high concentration of [tex]\([H_3O^+]\)[/tex] means the solution is more acidic, which results in a low pH. Thus,

[tex]\[ \text{Low pH} \][/tex]

#### (c) Low [tex]\([OH^-]\)[/tex]
A low concentration of [tex]\([OH^-]\)[/tex] implies a higher concentration of [tex]\([H_3O^+]\)[/tex] (as [tex]\( K_w \)[/tex] is constant), leading to a more acidic solution with a low pH. Thus,

[tex]\[ \text{Low pH} \][/tex]

#### (d) High [tex]\([OH^-]\)[/tex]
A high concentration of [tex]\([OH^-]\)[/tex] implies a lower concentration of [tex]\([H_3O^+]\)[/tex], leading to a more basic solution with a high pH. Thus,

[tex]\[ \text{High pH} \][/tex]

These results conclude the step-by-step solution for each part of the question.