Engage with knowledgeable experts and get accurate answers on IDNLearn.com. Join our community to receive prompt and reliable responses to your questions from knowledgeable professionals.
Sagot :
To determine the gravitational force between two masses, you can use Newton's law of universal gravitation, which is formulated as follows:
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]
Given:
- [tex]\( G \)[/tex] (Gravitational constant) = [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] (Mass 1) = [tex]\( 4.32 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] (Mass 2) = [tex]\( 163 \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] (Distance between the masses) = [tex]\( 83.0 \, \text{m} \)[/tex]
Step-by-step solution:
1. Identify the masses and the separation distance:
[tex]\[ m_1 = 4.32 \, \text{kg} \][/tex]
[tex]\[ m_2 = 163 \, \text{kg} \][/tex]
[tex]\[ r = 83.0 \, \text{m} \][/tex]
2. Substitute the values into the formula for the gravitational force:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot \frac{4.32 \times 163}{83.0^2} \][/tex]
3. Calculate the gravitational force:
- First, calculate the product of the masses:
[tex]\[ m_1 \times m_2 = 4.32 \times 163 = 704.16 \, \text{kg}^2 \][/tex]
- Next, calculate the square of the distance:
[tex]\[ r^2 = 83.0^2 = 6889.0 \, \text{m}^2 \][/tex]
- Now, substitute these intermediate results back into the formula:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N m}^2/\text{kg}^2 \cdot \frac{704.16 \, \text{kg}^2}{6889.0 \, \text{m}^2} \][/tex]
- Simplify the division inside the parentheses:
[tex]\[ \frac{704.16}{6889.0} \approx 0.1022 \][/tex]
- Finally, multiply by the gravitational constant:
[tex]\[ 6.67 \times 10^{-11} \cdot 0.1022 \approx 6.82 \times 10^{-12} \, \text{N} \][/tex]
Thus, the gravitational force between the two masses is approximately:
[tex]\[ \vec{F} \approx 6.82 \times 10^{-12} \, \text{N} \][/tex]
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]
Given:
- [tex]\( G \)[/tex] (Gravitational constant) = [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] (Mass 1) = [tex]\( 4.32 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] (Mass 2) = [tex]\( 163 \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] (Distance between the masses) = [tex]\( 83.0 \, \text{m} \)[/tex]
Step-by-step solution:
1. Identify the masses and the separation distance:
[tex]\[ m_1 = 4.32 \, \text{kg} \][/tex]
[tex]\[ m_2 = 163 \, \text{kg} \][/tex]
[tex]\[ r = 83.0 \, \text{m} \][/tex]
2. Substitute the values into the formula for the gravitational force:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot \frac{4.32 \times 163}{83.0^2} \][/tex]
3. Calculate the gravitational force:
- First, calculate the product of the masses:
[tex]\[ m_1 \times m_2 = 4.32 \times 163 = 704.16 \, \text{kg}^2 \][/tex]
- Next, calculate the square of the distance:
[tex]\[ r^2 = 83.0^2 = 6889.0 \, \text{m}^2 \][/tex]
- Now, substitute these intermediate results back into the formula:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N m}^2/\text{kg}^2 \cdot \frac{704.16 \, \text{kg}^2}{6889.0 \, \text{m}^2} \][/tex]
- Simplify the division inside the parentheses:
[tex]\[ \frac{704.16}{6889.0} \approx 0.1022 \][/tex]
- Finally, multiply by the gravitational constant:
[tex]\[ 6.67 \times 10^{-11} \cdot 0.1022 \approx 6.82 \times 10^{-12} \, \text{N} \][/tex]
Thus, the gravitational force between the two masses is approximately:
[tex]\[ \vec{F} \approx 6.82 \times 10^{-12} \, \text{N} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.