Engage with knowledgeable experts and get accurate answers on IDNLearn.com. Our experts provide prompt and accurate answers to help you make informed decisions on any topic.
Sagot :
Let’s solve for the resistance of a 2.0 m copper wire with a given resistivity and cross-sectional area.
The formula for calculating the resistance [tex]\( R \)[/tex] of a wire is given by:
[tex]\[ R = \frac{\rho L}{A} \][/tex]
Where:
- [tex]\( \rho \)[/tex] is the resistivity of the material (for copper, [tex]\( \rho = 1.7 \times 10^{-8} \ \Omega \cdot m \)[/tex])
- [tex]\( L \)[/tex] is the length of the wire (2.0 m)
- [tex]\( A \)[/tex] is the cross-sectional area of the wire ([tex]\( 2.08 \times 10^{-6} \ m^2 \)[/tex])
Now, substitute the known values into the formula:
[tex]\[ R = \frac{(1.7 \times 10^{-8} \ \Omega \cdot m) \times 2.0 \ m}{2.08 \times 10^{-6} \ m^2} \][/tex]
First, multiply the resistivity by the length of the wire:
[tex]\[ (1.7 \times 10^{-8}) \times 2.0 = 3.4 \times 10^{-8} \ \Omega \cdot m^2 \][/tex]
Next, divide by the cross-sectional area:
[tex]\[ R = \frac{3.4 \times 10^{-8} \ \Omega \cdot m^2}{2.08 \times 10^{-6} \ m^2} \][/tex]
[tex]\[ R \approx 0.016346153846153847 \ \Omega \][/tex]
Thus, the resistance of the copper wire is approximately [tex]\( 0.0163 \ \Omega \)[/tex].
Matching this to the provided options, the closest answer is:
A. [tex]\( 1.6 \times 10^{-2} \Omega \)[/tex]
The formula for calculating the resistance [tex]\( R \)[/tex] of a wire is given by:
[tex]\[ R = \frac{\rho L}{A} \][/tex]
Where:
- [tex]\( \rho \)[/tex] is the resistivity of the material (for copper, [tex]\( \rho = 1.7 \times 10^{-8} \ \Omega \cdot m \)[/tex])
- [tex]\( L \)[/tex] is the length of the wire (2.0 m)
- [tex]\( A \)[/tex] is the cross-sectional area of the wire ([tex]\( 2.08 \times 10^{-6} \ m^2 \)[/tex])
Now, substitute the known values into the formula:
[tex]\[ R = \frac{(1.7 \times 10^{-8} \ \Omega \cdot m) \times 2.0 \ m}{2.08 \times 10^{-6} \ m^2} \][/tex]
First, multiply the resistivity by the length of the wire:
[tex]\[ (1.7 \times 10^{-8}) \times 2.0 = 3.4 \times 10^{-8} \ \Omega \cdot m^2 \][/tex]
Next, divide by the cross-sectional area:
[tex]\[ R = \frac{3.4 \times 10^{-8} \ \Omega \cdot m^2}{2.08 \times 10^{-6} \ m^2} \][/tex]
[tex]\[ R \approx 0.016346153846153847 \ \Omega \][/tex]
Thus, the resistance of the copper wire is approximately [tex]\( 0.0163 \ \Omega \)[/tex].
Matching this to the provided options, the closest answer is:
A. [tex]\( 1.6 \times 10^{-2} \Omega \)[/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.