Join IDNLearn.com and start exploring the answers to your most pressing questions. Get prompt and accurate answers to your questions from our community of experts who are always ready to help.

What is the resistance of a 2.0 m copper wire [tex]\(\left(\rho=1.7 \times 10^{-8} \Omega \cdot m \right)\)[/tex] that has a cross-sectional area of [tex]\(2.08 \times 10^{-6} m^2\)[/tex]? Use [tex]\(R=\frac{\rho L}{A}\)[/tex].

A. [tex]\(1.6 \times 10^{-2} \Omega\)[/tex]

B. [tex]\(2.4 \times 10^2 \Omega\)[/tex]

C. [tex]\(4.1 \times 10^{-3} \Omega\)[/tex]

D. [tex]\(6.1 \times 10^1 \Omega\)[/tex]


Sagot :

Let’s solve for the resistance of a 2.0 m copper wire with a given resistivity and cross-sectional area.

The formula for calculating the resistance [tex]\( R \)[/tex] of a wire is given by:
[tex]\[ R = \frac{\rho L}{A} \][/tex]

Where:
- [tex]\( \rho \)[/tex] is the resistivity of the material (for copper, [tex]\( \rho = 1.7 \times 10^{-8} \ \Omega \cdot m \)[/tex])
- [tex]\( L \)[/tex] is the length of the wire (2.0 m)
- [tex]\( A \)[/tex] is the cross-sectional area of the wire ([tex]\( 2.08 \times 10^{-6} \ m^2 \)[/tex])

Now, substitute the known values into the formula:

[tex]\[ R = \frac{(1.7 \times 10^{-8} \ \Omega \cdot m) \times 2.0 \ m}{2.08 \times 10^{-6} \ m^2} \][/tex]

First, multiply the resistivity by the length of the wire:

[tex]\[ (1.7 \times 10^{-8}) \times 2.0 = 3.4 \times 10^{-8} \ \Omega \cdot m^2 \][/tex]

Next, divide by the cross-sectional area:

[tex]\[ R = \frac{3.4 \times 10^{-8} \ \Omega \cdot m^2}{2.08 \times 10^{-6} \ m^2} \][/tex]

[tex]\[ R \approx 0.016346153846153847 \ \Omega \][/tex]

Thus, the resistance of the copper wire is approximately [tex]\( 0.0163 \ \Omega \)[/tex].

Matching this to the provided options, the closest answer is:

A. [tex]\( 1.6 \times 10^{-2} \Omega \)[/tex]