From tech troubles to travel tips, IDNLearn.com has answers to all your questions. Our experts are available to provide in-depth and trustworthy answers to any questions you may have.
Sagot :
To determine in which of the following equations [tex]\( K_p = K_c \)[/tex], we have to understand the relationship between these two equilibrium constants. The relation between [tex]\( K_p \)[/tex] and [tex]\( K_c \)[/tex] is given by the equation:
[tex]\[ K_p = K_c (RT)^{\Delta n} \][/tex]
where:
- [tex]\( R \)[/tex] is the universal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin,
- [tex]\( \Delta n \)[/tex] is the change in the number of moles of gas between the reactants and the products.
For [tex]\( K_p \)[/tex] to equal [tex]\( K_c \)[/tex], the exponent [tex]\( \Delta n \)[/tex] must be zero. This would make [tex]\( (RT)^{\Delta n} \)[/tex] equal to 1, since any number raised to the power of zero is 1.
Now, let's evaluate [tex]\( \Delta n \)[/tex] for each given equation:
### Option A: [tex]\( 2H_{2(g)} + C_2H_{2(g)} \rightleftharpoons C_2H_6(g) \)[/tex]
- Reactants: 2 moles of [tex]\( H_2(g) \)[/tex] + 1 mole of [tex]\( C_2H_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 1 mole of [tex]\( C_2H_6(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 1 - 3 = -2 \)[/tex]
### Option B: [tex]\( 2NO_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_2_{(g)} \)[/tex]
- Reactants: 2 moles of [tex]\( NO(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 2 moles of [tex]\( NO_2(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 3 = -1 \)[/tex]
### Option C: [tex]\( N_2_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_{(g)} \)[/tex]
- Reactants: 1 mole of [tex]\( N_2(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 2 moles
- Products: 2 moles of [tex]\( NO(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 2 = 0 \)[/tex]
### Option D: [tex]\( 2H_2_{(g)} + O_2_{(g)} \rightleftharpoons 2H_2O_{(g)} \)[/tex]
- Reactants: 2 moles of [tex]\( H_2(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 2 moles of [tex]\( H_2O(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 3 = -1 \)[/tex]
The correct answer is:
C. [tex]\( N_2_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_{(g)} \)[/tex]
In this case, [tex]\( \Delta n = 0 \)[/tex], which means that [tex]\( (RT)^{\Delta n} = 1 \)[/tex]. Therefore, [tex]\( K_p = K_c \)[/tex].
[tex]\[ K_p = K_c (RT)^{\Delta n} \][/tex]
where:
- [tex]\( R \)[/tex] is the universal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin,
- [tex]\( \Delta n \)[/tex] is the change in the number of moles of gas between the reactants and the products.
For [tex]\( K_p \)[/tex] to equal [tex]\( K_c \)[/tex], the exponent [tex]\( \Delta n \)[/tex] must be zero. This would make [tex]\( (RT)^{\Delta n} \)[/tex] equal to 1, since any number raised to the power of zero is 1.
Now, let's evaluate [tex]\( \Delta n \)[/tex] for each given equation:
### Option A: [tex]\( 2H_{2(g)} + C_2H_{2(g)} \rightleftharpoons C_2H_6(g) \)[/tex]
- Reactants: 2 moles of [tex]\( H_2(g) \)[/tex] + 1 mole of [tex]\( C_2H_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 1 mole of [tex]\( C_2H_6(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 1 - 3 = -2 \)[/tex]
### Option B: [tex]\( 2NO_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_2_{(g)} \)[/tex]
- Reactants: 2 moles of [tex]\( NO(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 2 moles of [tex]\( NO_2(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 3 = -1 \)[/tex]
### Option C: [tex]\( N_2_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_{(g)} \)[/tex]
- Reactants: 1 mole of [tex]\( N_2(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 2 moles
- Products: 2 moles of [tex]\( NO(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 2 = 0 \)[/tex]
### Option D: [tex]\( 2H_2_{(g)} + O_2_{(g)} \rightleftharpoons 2H_2O_{(g)} \)[/tex]
- Reactants: 2 moles of [tex]\( H_2(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 2 moles of [tex]\( H_2O(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 3 = -1 \)[/tex]
The correct answer is:
C. [tex]\( N_2_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_{(g)} \)[/tex]
In this case, [tex]\( \Delta n = 0 \)[/tex], which means that [tex]\( (RT)^{\Delta n} = 1 \)[/tex]. Therefore, [tex]\( K_p = K_c \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.