Get the most out of your questions with IDNLearn.com's extensive resources. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.
Sagot :
To find the gravitational force [tex]\(\vec{F}\)[/tex] between two masses, we use Newton's Law of Universal Gravitation, given by the formula:
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given:
- [tex]\( m_1 = 84.2 \, \text{kg} \)[/tex],
- [tex]\( m_2 = 28.4 \, \text{kg} \)[/tex],
- [tex]\( r = 4.62 \, \text{m} \)[/tex].
Step-by-step solution:
1. Substitute the given values into the formula:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot \frac{84.2 \cdot 28.4}{4.62^2} \][/tex]
2. Calculate the product of the masses:
[tex]\[ m_1 \cdot m_2 = 84.2 \, \text{kg} \times 28.4 \, \text{kg} = 2391.28 \, \text{kg}^2 \][/tex]
3. Calculate the square of the distance:
[tex]\[ r^2 = 4.62 \, \text{m} \times 4.62 \, \text{m} = 21.3444 \, \text{m}^2 \][/tex]
4. Substitute these results back into the formula:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \frac{2391.28}{21.3444} \][/tex]
5. Compute the division inside the parentheses:
[tex]\[ \frac{2391.28}{21.3444} \approx 112.037 \][/tex]
6. Finally, multiply by the gravitational constant:
[tex]\[ \vec{F} \approx 6.67 \times 10^{-11} \, \times 112.037 \][/tex]
7. Calculate the result:
[tex]\[ \vec{F} \approx 7.472609958583983 \times 10^{-9} \, \text{N} \][/tex]
Therefore, the gravitational force [tex]\( \vec{F} \)[/tex] between the two masses is approximately:
[tex]\[ \vec{F} \approx 7.47 \times 10^{-9} \, \text{N} \][/tex]
So, we have:
[tex]\[ \vec{F} \approx 7.47 \times 10^{-9} \, \text{N} \][/tex]
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given:
- [tex]\( m_1 = 84.2 \, \text{kg} \)[/tex],
- [tex]\( m_2 = 28.4 \, \text{kg} \)[/tex],
- [tex]\( r = 4.62 \, \text{m} \)[/tex].
Step-by-step solution:
1. Substitute the given values into the formula:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot \frac{84.2 \cdot 28.4}{4.62^2} \][/tex]
2. Calculate the product of the masses:
[tex]\[ m_1 \cdot m_2 = 84.2 \, \text{kg} \times 28.4 \, \text{kg} = 2391.28 \, \text{kg}^2 \][/tex]
3. Calculate the square of the distance:
[tex]\[ r^2 = 4.62 \, \text{m} \times 4.62 \, \text{m} = 21.3444 \, \text{m}^2 \][/tex]
4. Substitute these results back into the formula:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \frac{2391.28}{21.3444} \][/tex]
5. Compute the division inside the parentheses:
[tex]\[ \frac{2391.28}{21.3444} \approx 112.037 \][/tex]
6. Finally, multiply by the gravitational constant:
[tex]\[ \vec{F} \approx 6.67 \times 10^{-11} \, \times 112.037 \][/tex]
7. Calculate the result:
[tex]\[ \vec{F} \approx 7.472609958583983 \times 10^{-9} \, \text{N} \][/tex]
Therefore, the gravitational force [tex]\( \vec{F} \)[/tex] between the two masses is approximately:
[tex]\[ \vec{F} \approx 7.47 \times 10^{-9} \, \text{N} \][/tex]
So, we have:
[tex]\[ \vec{F} \approx 7.47 \times 10^{-9} \, \text{N} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.