IDNLearn.com: Your go-to resource for finding expert answers. Find the answers you need quickly and accurately with help from our knowledgeable and dedicated community members.
Sagot :
Sure! Let's solve the problem step-by-step.
We are given:
- Distance between the masses, [tex]\( r = 5.60 \)[/tex] meters
- Mass 1, [tex]\( m_1 = 4.17 \)[/tex] kilograms
- Mass 2, [tex]\( m_2 = 3.29 \)[/tex] kilograms
- Gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \)[/tex] N [tex]\(\cdot\)[/tex] m[tex]\(^2\)[/tex] / kg[tex]\(^2\)[/tex]
We need to find the gravitational force [tex]\( \vec{F} \)[/tex] between the two masses using the formula:
[tex]\[ \vec{F} = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
Step-by-step solution:
1. Plug in the known values into the formula:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot \frac{4.17 \cdot 3.29}{(5.60)^2} \][/tex]
2. Calculate the product of the masses:
[tex]\[ 4.17 \cdot 3.29 = 13.7193 \][/tex]
3. Calculate the square of the distance:
[tex]\[ (5.60)^2 = 31.36 \][/tex]
4. Divide the product of the masses by the square of the distance:
[tex]\[ \frac{13.7193}{31.36} = 0.4375710208530831 \][/tex]
5. Multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot 0.4375710208530831 = 2.917976116071429 \times 10^{-11} \text{ N} \][/tex]
So the gravitational force is:
[tex]\[ \vec{F} = 2.917976116071429 \times 10^{-11} \text{ N} \][/tex]
To express the force in the format [tex]\([a] \times 10^{[b]} \text{ N}\)[/tex]:
- [tex]\( a = 0.2917976116071429 \)[/tex]
- [tex]\( b = -10 \)[/tex]
Therefore, the gravitational force between the two masses is:
[tex]\[ \vec{F} = 0.2917976116071429 \times 10^{-10} \text{ N} \][/tex]
We are given:
- Distance between the masses, [tex]\( r = 5.60 \)[/tex] meters
- Mass 1, [tex]\( m_1 = 4.17 \)[/tex] kilograms
- Mass 2, [tex]\( m_2 = 3.29 \)[/tex] kilograms
- Gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \)[/tex] N [tex]\(\cdot\)[/tex] m[tex]\(^2\)[/tex] / kg[tex]\(^2\)[/tex]
We need to find the gravitational force [tex]\( \vec{F} \)[/tex] between the two masses using the formula:
[tex]\[ \vec{F} = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
Step-by-step solution:
1. Plug in the known values into the formula:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot \frac{4.17 \cdot 3.29}{(5.60)^2} \][/tex]
2. Calculate the product of the masses:
[tex]\[ 4.17 \cdot 3.29 = 13.7193 \][/tex]
3. Calculate the square of the distance:
[tex]\[ (5.60)^2 = 31.36 \][/tex]
4. Divide the product of the masses by the square of the distance:
[tex]\[ \frac{13.7193}{31.36} = 0.4375710208530831 \][/tex]
5. Multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot 0.4375710208530831 = 2.917976116071429 \times 10^{-11} \text{ N} \][/tex]
So the gravitational force is:
[tex]\[ \vec{F} = 2.917976116071429 \times 10^{-11} \text{ N} \][/tex]
To express the force in the format [tex]\([a] \times 10^{[b]} \text{ N}\)[/tex]:
- [tex]\( a = 0.2917976116071429 \)[/tex]
- [tex]\( b = -10 \)[/tex]
Therefore, the gravitational force between the two masses is:
[tex]\[ \vec{F} = 0.2917976116071429 \times 10^{-10} \text{ N} \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.