IDNLearn.com offers a reliable platform for finding accurate and timely answers. Ask anything and receive prompt, well-informed answers from our community of knowledgeable experts.
Sagot :
To solve for [tex]\(\cos(x + y)\)[/tex] given that [tex]\(\sin x = \frac{3}{5}\)[/tex] and [tex]\(\cos y = \frac{7}{25}\)[/tex] with [tex]\(x\)[/tex] and [tex]\(y\)[/tex] both being angles in the first quadrant, we will follow these steps:
1. Find [tex]\(\cos x\)[/tex]:
Since [tex]\(x\)[/tex] is in the first quadrant, both sine and cosine are positive. Using the Pythagorean identity [tex]\(\sin^2 x + \cos^2 x = 1\)[/tex],
[tex]\[ \sin^2 x = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \][/tex]
[tex]\[ \cos^2 x = 1 - \sin^2 x = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \][/tex]
[tex]\[ \cos x = \sqrt{\frac{16}{25}} = \frac{4}{5} \][/tex]
Therefore, [tex]\(\cos x = \frac{4}{5}\)[/tex].
2. Find [tex]\(\sin y\)[/tex]:
Similarly, since [tex]\(y\)[/tex] is in the first quadrant, both sine and cosine are positive. Using the Pythagorean identity [tex]\(\cos^2 y + \sin^2 y = 1\)[/tex],
[tex]\[ \cos^2 y = \left(\frac{7}{25}\right)^2 = \frac{49}{625} \][/tex]
[tex]\[ \sin^2 y = 1 - \cos^2 y = 1 - \frac{49}{625} = \frac{625}{625} - \frac{49}{625} = \frac{576}{625} \][/tex]
[tex]\[ \sin y = \sqrt{\frac{576}{625}} = \frac{24}{25} \][/tex]
Therefore, [tex]\(\sin y = \frac{24}{25}\)[/tex].
3. Calculate [tex]\(\cos(x + y)\)[/tex]:
Using the angle addition formula for cosine: [tex]\(\cos(x + y) = \cos x \cos y - \sin x \sin y\)[/tex],
[tex]\[ \cos(x + y) = \left(\frac{4}{5} \cdot \frac{7}{25}\right) - \left(\frac{3}{5} \cdot \frac{24}{25}\right) \][/tex]
[tex]\[ \cos(x + y) = \frac{28}{125} - \frac{72}{125} = \frac{28 - 72}{125} = \frac{-44}{125} = -0.352 \][/tex]
Therefore, the values we have are:
[tex]\[ \cos x = \frac{4}{5} = 0.8 \][/tex]
[tex]\[ \sin y = \frac{24}{25} = 0.96 \][/tex]
[tex]\[ \cos(x + y) = -0.352 \][/tex]
So, when given [tex]\(\sin x = \frac{3}{5}\)[/tex] and [tex]\(\cos y = \frac{7}{25}\)[/tex] with angles in the first quadrant, the value of [tex]\(\cos(x + y)\)[/tex] is [tex]\(-0.352\)[/tex].
1. Find [tex]\(\cos x\)[/tex]:
Since [tex]\(x\)[/tex] is in the first quadrant, both sine and cosine are positive. Using the Pythagorean identity [tex]\(\sin^2 x + \cos^2 x = 1\)[/tex],
[tex]\[ \sin^2 x = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \][/tex]
[tex]\[ \cos^2 x = 1 - \sin^2 x = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \][/tex]
[tex]\[ \cos x = \sqrt{\frac{16}{25}} = \frac{4}{5} \][/tex]
Therefore, [tex]\(\cos x = \frac{4}{5}\)[/tex].
2. Find [tex]\(\sin y\)[/tex]:
Similarly, since [tex]\(y\)[/tex] is in the first quadrant, both sine and cosine are positive. Using the Pythagorean identity [tex]\(\cos^2 y + \sin^2 y = 1\)[/tex],
[tex]\[ \cos^2 y = \left(\frac{7}{25}\right)^2 = \frac{49}{625} \][/tex]
[tex]\[ \sin^2 y = 1 - \cos^2 y = 1 - \frac{49}{625} = \frac{625}{625} - \frac{49}{625} = \frac{576}{625} \][/tex]
[tex]\[ \sin y = \sqrt{\frac{576}{625}} = \frac{24}{25} \][/tex]
Therefore, [tex]\(\sin y = \frac{24}{25}\)[/tex].
3. Calculate [tex]\(\cos(x + y)\)[/tex]:
Using the angle addition formula for cosine: [tex]\(\cos(x + y) = \cos x \cos y - \sin x \sin y\)[/tex],
[tex]\[ \cos(x + y) = \left(\frac{4}{5} \cdot \frac{7}{25}\right) - \left(\frac{3}{5} \cdot \frac{24}{25}\right) \][/tex]
[tex]\[ \cos(x + y) = \frac{28}{125} - \frac{72}{125} = \frac{28 - 72}{125} = \frac{-44}{125} = -0.352 \][/tex]
Therefore, the values we have are:
[tex]\[ \cos x = \frac{4}{5} = 0.8 \][/tex]
[tex]\[ \sin y = \frac{24}{25} = 0.96 \][/tex]
[tex]\[ \cos(x + y) = -0.352 \][/tex]
So, when given [tex]\(\sin x = \frac{3}{5}\)[/tex] and [tex]\(\cos y = \frac{7}{25}\)[/tex] with angles in the first quadrant, the value of [tex]\(\cos(x + y)\)[/tex] is [tex]\(-0.352\)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.