Get clear, concise, and accurate answers to your questions on IDNLearn.com. Discover comprehensive answers from knowledgeable members of our community, covering a wide range of topics to meet all your informational needs.
Sagot :
To solve for [tex]\(\cos(x + y)\)[/tex] given that [tex]\(\sin x = \frac{3}{5}\)[/tex] and [tex]\(\cos y = \frac{7}{25}\)[/tex] with [tex]\(x\)[/tex] and [tex]\(y\)[/tex] both being angles in the first quadrant, we will follow these steps:
1. Find [tex]\(\cos x\)[/tex]:
Since [tex]\(x\)[/tex] is in the first quadrant, both sine and cosine are positive. Using the Pythagorean identity [tex]\(\sin^2 x + \cos^2 x = 1\)[/tex],
[tex]\[ \sin^2 x = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \][/tex]
[tex]\[ \cos^2 x = 1 - \sin^2 x = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \][/tex]
[tex]\[ \cos x = \sqrt{\frac{16}{25}} = \frac{4}{5} \][/tex]
Therefore, [tex]\(\cos x = \frac{4}{5}\)[/tex].
2. Find [tex]\(\sin y\)[/tex]:
Similarly, since [tex]\(y\)[/tex] is in the first quadrant, both sine and cosine are positive. Using the Pythagorean identity [tex]\(\cos^2 y + \sin^2 y = 1\)[/tex],
[tex]\[ \cos^2 y = \left(\frac{7}{25}\right)^2 = \frac{49}{625} \][/tex]
[tex]\[ \sin^2 y = 1 - \cos^2 y = 1 - \frac{49}{625} = \frac{625}{625} - \frac{49}{625} = \frac{576}{625} \][/tex]
[tex]\[ \sin y = \sqrt{\frac{576}{625}} = \frac{24}{25} \][/tex]
Therefore, [tex]\(\sin y = \frac{24}{25}\)[/tex].
3. Calculate [tex]\(\cos(x + y)\)[/tex]:
Using the angle addition formula for cosine: [tex]\(\cos(x + y) = \cos x \cos y - \sin x \sin y\)[/tex],
[tex]\[ \cos(x + y) = \left(\frac{4}{5} \cdot \frac{7}{25}\right) - \left(\frac{3}{5} \cdot \frac{24}{25}\right) \][/tex]
[tex]\[ \cos(x + y) = \frac{28}{125} - \frac{72}{125} = \frac{28 - 72}{125} = \frac{-44}{125} = -0.352 \][/tex]
Therefore, the values we have are:
[tex]\[ \cos x = \frac{4}{5} = 0.8 \][/tex]
[tex]\[ \sin y = \frac{24}{25} = 0.96 \][/tex]
[tex]\[ \cos(x + y) = -0.352 \][/tex]
So, when given [tex]\(\sin x = \frac{3}{5}\)[/tex] and [tex]\(\cos y = \frac{7}{25}\)[/tex] with angles in the first quadrant, the value of [tex]\(\cos(x + y)\)[/tex] is [tex]\(-0.352\)[/tex].
1. Find [tex]\(\cos x\)[/tex]:
Since [tex]\(x\)[/tex] is in the first quadrant, both sine and cosine are positive. Using the Pythagorean identity [tex]\(\sin^2 x + \cos^2 x = 1\)[/tex],
[tex]\[ \sin^2 x = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \][/tex]
[tex]\[ \cos^2 x = 1 - \sin^2 x = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \][/tex]
[tex]\[ \cos x = \sqrt{\frac{16}{25}} = \frac{4}{5} \][/tex]
Therefore, [tex]\(\cos x = \frac{4}{5}\)[/tex].
2. Find [tex]\(\sin y\)[/tex]:
Similarly, since [tex]\(y\)[/tex] is in the first quadrant, both sine and cosine are positive. Using the Pythagorean identity [tex]\(\cos^2 y + \sin^2 y = 1\)[/tex],
[tex]\[ \cos^2 y = \left(\frac{7}{25}\right)^2 = \frac{49}{625} \][/tex]
[tex]\[ \sin^2 y = 1 - \cos^2 y = 1 - \frac{49}{625} = \frac{625}{625} - \frac{49}{625} = \frac{576}{625} \][/tex]
[tex]\[ \sin y = \sqrt{\frac{576}{625}} = \frac{24}{25} \][/tex]
Therefore, [tex]\(\sin y = \frac{24}{25}\)[/tex].
3. Calculate [tex]\(\cos(x + y)\)[/tex]:
Using the angle addition formula for cosine: [tex]\(\cos(x + y) = \cos x \cos y - \sin x \sin y\)[/tex],
[tex]\[ \cos(x + y) = \left(\frac{4}{5} \cdot \frac{7}{25}\right) - \left(\frac{3}{5} \cdot \frac{24}{25}\right) \][/tex]
[tex]\[ \cos(x + y) = \frac{28}{125} - \frac{72}{125} = \frac{28 - 72}{125} = \frac{-44}{125} = -0.352 \][/tex]
Therefore, the values we have are:
[tex]\[ \cos x = \frac{4}{5} = 0.8 \][/tex]
[tex]\[ \sin y = \frac{24}{25} = 0.96 \][/tex]
[tex]\[ \cos(x + y) = -0.352 \][/tex]
So, when given [tex]\(\sin x = \frac{3}{5}\)[/tex] and [tex]\(\cos y = \frac{7}{25}\)[/tex] with angles in the first quadrant, the value of [tex]\(\cos(x + y)\)[/tex] is [tex]\(-0.352\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.