Find expert answers and community support for all your questions on IDNLearn.com. Find the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
To determine if the complex number [tex]\(-1 + i\sqrt{3}\)[/tex] is equal to [tex]\(2 \text{ cis } 120^\circ\)[/tex] in polar form, we need to verify both the magnitude (or modulus) and the angle (or argument) of the complex number in polar form.
Step 1: Compute the Magnitude
The magnitude [tex]\(r\)[/tex] of a complex number [tex]\(a + bi\)[/tex] is given by the formula:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
For the complex number [tex]\(-1 + i\sqrt{3}\)[/tex]:
- The real part [tex]\(a\)[/tex] is [tex]\(-1\)[/tex].
- The imaginary part [tex]\(b\)[/tex] is [tex]\(\sqrt{3}\)[/tex].
Let's compute the magnitude:
[tex]\[ r = \sqrt{(-1)^2 + (\sqrt{3})^2} \][/tex]
[tex]\[ r = \sqrt{1 + 3} \][/tex]
[tex]\[ r = \sqrt{4} \][/tex]
[tex]\[ r = 2 \][/tex]
So, the magnitude of [tex]\(-1 + i\sqrt{3}\)[/tex] is [tex]\(2\)[/tex].
Step 2: Compute the Angle
The angle [tex]\(\theta\)[/tex] of a complex number [tex]\(a + bi\)[/tex] in polar form is given by:
[tex]\[ \theta = \tan^{-1}\left(\frac{b}{a}\right) \][/tex]
Note: The angle should be adjusted based on the quadrant in which the complex number lies.
For the complex number [tex]\(-1 + i\sqrt{3}\)[/tex]:
[tex]\[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{-1}\right) \][/tex]
This evaluation gives an angle in the second quadrant because the real part is negative and the imaginary part is positive. The exact angle is:
[tex]\[ \theta = 180^\circ - \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) \][/tex]
[tex]\[ \theta = 180^\circ - 60^\circ \][/tex]
[tex]\[ \theta = 120^\circ \][/tex]
So, the angle of [tex]\(-1 + i\sqrt{3}\)[/tex] in polar form is [tex]\(120^\circ\)[/tex].
Conclusion
- The magnitude of [tex]\(-1 + i\sqrt{3}\)[/tex] is [tex]\(2\)[/tex].
- The angle of [tex]\(-1 + i\sqrt{3}\)[/tex] is [tex]\(120^\circ\)[/tex].
Therefore, the complex number [tex]\(-1 + i\sqrt{3}\)[/tex] indeed corresponds to [tex]\(2 \text{ cis } 120^\circ\)[/tex] in polar form.
The statement [tex]\(-1 + i\sqrt{3} = 2 \text{ cis } 120^\circ\)[/tex] is True.
Step 1: Compute the Magnitude
The magnitude [tex]\(r\)[/tex] of a complex number [tex]\(a + bi\)[/tex] is given by the formula:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
For the complex number [tex]\(-1 + i\sqrt{3}\)[/tex]:
- The real part [tex]\(a\)[/tex] is [tex]\(-1\)[/tex].
- The imaginary part [tex]\(b\)[/tex] is [tex]\(\sqrt{3}\)[/tex].
Let's compute the magnitude:
[tex]\[ r = \sqrt{(-1)^2 + (\sqrt{3})^2} \][/tex]
[tex]\[ r = \sqrt{1 + 3} \][/tex]
[tex]\[ r = \sqrt{4} \][/tex]
[tex]\[ r = 2 \][/tex]
So, the magnitude of [tex]\(-1 + i\sqrt{3}\)[/tex] is [tex]\(2\)[/tex].
Step 2: Compute the Angle
The angle [tex]\(\theta\)[/tex] of a complex number [tex]\(a + bi\)[/tex] in polar form is given by:
[tex]\[ \theta = \tan^{-1}\left(\frac{b}{a}\right) \][/tex]
Note: The angle should be adjusted based on the quadrant in which the complex number lies.
For the complex number [tex]\(-1 + i\sqrt{3}\)[/tex]:
[tex]\[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{-1}\right) \][/tex]
This evaluation gives an angle in the second quadrant because the real part is negative and the imaginary part is positive. The exact angle is:
[tex]\[ \theta = 180^\circ - \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) \][/tex]
[tex]\[ \theta = 180^\circ - 60^\circ \][/tex]
[tex]\[ \theta = 120^\circ \][/tex]
So, the angle of [tex]\(-1 + i\sqrt{3}\)[/tex] in polar form is [tex]\(120^\circ\)[/tex].
Conclusion
- The magnitude of [tex]\(-1 + i\sqrt{3}\)[/tex] is [tex]\(2\)[/tex].
- The angle of [tex]\(-1 + i\sqrt{3}\)[/tex] is [tex]\(120^\circ\)[/tex].
Therefore, the complex number [tex]\(-1 + i\sqrt{3}\)[/tex] indeed corresponds to [tex]\(2 \text{ cis } 120^\circ\)[/tex] in polar form.
The statement [tex]\(-1 + i\sqrt{3} = 2 \text{ cis } 120^\circ\)[/tex] is True.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.