Get the answers you've been looking for with the help of IDNLearn.com's expert community. Join our community to receive timely and reliable responses to your questions from knowledgeable professionals.

The equilibrium constant, [tex]$K _{ p }$[/tex], for the following reaction [tex]$H_2(g) + Cl_2(g) \rightarrow 2 HCl (g)$[/tex] at [tex]25^{\circ} C[/tex] is 13.75. Which of the following conditions are NOT at equilibrium?

Select one:

a. [tex]P_{H_2} = 0.085 \, \text{atm}, \, P_{Cl_2} = 0.085 \, \text{atm}, \, P_{HCl} = 0.32 \, \text{atm}[/tex]

b. [tex]P_{H_2} = 0.270 \, \text{atm}, \, P_{Cl_2} = 0.270 \, \text{atm}, \, P_{HCl} = 1 \, \text{atm}[/tex]

c. [tex]P_{H_2} = 1.25 \, \text{atm}, \, P_{Cl_2} = 0.121 \, \text{atm}, \, P_{HCl} = 0.5 \, \text{atm}[/tex]

d. [tex]P_{H_2} = 0.125 \, \text{atm}, \, P_{Cl_2} = 1.31 \, \text{atm}, \, P_{HCl} = 1.5 \, \text{atm}[/tex]

e. All of the above are at equilibrium


Sagot :

Let's determine which of the given conditions are not at equilibrium for the reaction:

[tex]\[ \text{H}_2(g) + \text{Cl}_2(g) \leftrightarrows 2 \text{HCl}(g) \][/tex]

The equilibrium constant, [tex]\( K_p \)[/tex], at [tex]\( 25^\circ C \)[/tex] is 13.75. The reaction quotient, [tex]\( Q_p \)[/tex], is given by:

[tex]\[ Q_p = \frac{(P_{\text{HCl}})^2}{P_{\text{H}_2} \cdot P_{\text{Cl}_2}} \][/tex]

We will calculate [tex]\( Q_p \)[/tex] for each condition and compare it to [tex]\( K_p \)[/tex].

Condition a:
[tex]\[ P_{\text{H}_2} = 0.085 \, \text{atm}, \, P_{\text{Cl}_2} = 0.085 \, \text{atm}, \, P_{\text{HCl}} = 0.32 \, \text{atm} \][/tex]

[tex]\[ Q_p = \frac{(0.32)^2}{0.085 \cdot 0.085} = \frac{0.1024}{0.007225} \approx 14.18 \][/tex]

Condition b:
[tex]\[ P_{\text{H}_2} = 0.270 \, \text{atm}, \, P_{\text{Cl}_2} = 0.270 \, \text{atm}, \, P_{\text{HCl}} = 1.0 \, \text{atm} \][/tex]

[tex]\[ Q_p = \frac{(1.0)^2}{0.270 \cdot 0.270} = \frac{1.0}{0.0729} \approx 13.72 \][/tex]

Condition c:
[tex]\[ P_{\text{H}_2} = 1.25 \, \text{atm}, \, P_{\text{Cl}_2} = 0.121 \, \text{atm}, \, P_{\text{HCl}} = 0.5 \, \text{atm} \][/tex]

[tex]\[ Q_p = \frac{(0.5)^2}{1.25 \cdot 0.121} = \frac{0.25}{0.15125} \approx 1.65 \][/tex]

Condition d:
[tex]\[ P_{\text{H}_2} = 0.125 \, \text{atm}, \, P_{\text{Cl}_2} = 1.31 \, \text{atm}, \, P_{\text{HCl}} = 1.5 \, \text{atm} \][/tex]

[tex]\[ Q_p = \frac{(1.5)^2}{0.125 \cdot 1.31} = \frac{2.25}{0.16375} \approx 13.74 \][/tex]

Now we compare [tex]\( Q_p \)[/tex] to [tex]\( K_p = 13.75 \)[/tex]. We find:

- For condition a, [tex]\( Q_p \approx 14.18 \ne 13.75 \)[/tex]. Thus, it is not at equilibrium.
- For condition b, [tex]\( Q_p \approx 13.72 \ne 13.75 \)[/tex]. Thus, it is not at equilibrium.
- For condition c, [tex]\( Q_p \approx 1.65 \ne 13.75 \)[/tex]. Thus, it is not at equilibrium.
- For condition d, [tex]\( Q_p \approx 13.74 \ne 13.75 \)[/tex]. Thus, it is not at equilibrium.

Since all the calculated [tex]\( Q_p \)[/tex] values are not equal to [tex]\( K_p \)[/tex], all of the above conditions are not at equilibrium.

The correct selection is:
[tex]\[ \boxed{\text{e. all of the above are at equilibrium}} \][/tex]