Join IDNLearn.com today and start getting the answers you've been searching for. Our platform is designed to provide trustworthy and thorough answers to any questions you may have.

Evaluate the integral:

[tex]\[ \int_2^3 \frac{x}{\sqrt{169 - x^2}} \, dx \][/tex]


Sagot :

To solve the integral
[tex]\[ \int_2^3 \frac{x}{\sqrt{169-x^2}} \, dx, \][/tex]
we can follow these steps:

1. Identify the integrand: The integrand is [tex]\(\frac{x}{\sqrt{169 - x^2}}\)[/tex]. It suggests that a trigonometric substitution could be useful, or we might recognize a pattern of a derivative of an inverse trigonometric function.

2. Consider trigonometric substitution: Here, we recognize that [tex]\(169\)[/tex] is [tex]\(13^2\)[/tex], so we can use the substitution [tex]\( x = 13 \sin \theta \)[/tex], which implies that [tex]\(dx = 13 \cos \theta \, d\theta\)[/tex]. Also, [tex]\(13^2 - x^2 = 169 - 169 \sin^2 \theta = 169 \cos^2 \theta \)[/tex]. Hence, [tex]\( \sqrt{169 - x^2} = 13 \cos \theta \)[/tex].

3. Apply the substitution: Substitute [tex]\(x = 13 \sin \theta \)[/tex] and [tex]\(dx = 13 \cos \theta \, d\theta\)[/tex] into the integral.
[tex]\[ \int_2^3 \frac{x}{\sqrt{169-x^2}} \, dx = \int_2^3 \frac{13 \sin \theta}{13 \cos \theta} \cdot 13 \cos \theta \, d\theta = \int_2^3 \sin \theta \cdot 13 \, d\theta \][/tex]

4. Adjust the limits of integration: When [tex]\(x = 2\)[/tex], [tex]\(2 = 13 \sin \theta\)[/tex] thus [tex]\(\sin \theta = \frac{2}{13}\)[/tex], and when [tex]\(x = 3\)[/tex], [tex]\(3 = 13 \sin \theta\)[/tex] thus [tex]\(\sin \theta = \frac{3}{13}\)[/tex].

5. Evaluate the new integral: The integral in terms of [tex]\(\theta\)[/tex] is:
[tex]\[ \int_{\arcsin(\frac{2}{13})}^{\arcsin(\frac{3}{13})} 13 \sin \theta \, d\theta \][/tex]

6. Solve the integral: Using simple antiderivatives for the basic trigonometric function:
[tex]\[ \int 13 \sin \theta \, d\theta = -13 \cos \theta \][/tex]

7. Substitute back and evaluate at the bounds:
[tex]\[ \left[ -13 \cos \theta \right]_{\arcsin(\frac{2}{13})}^{\arcsin(\frac{3}{13})} \][/tex]

8. Calculate the cosine values of the bounds:
[tex]\[ -13 \cos(\arcsin(\frac{3}{13})) - (-13 \cos(\arcsin(\frac{2}{13}))) \][/tex]

9. Simplify using the relationships [tex]\( \cos(\theta) = \sqrt{1 - \sin^2(\theta)} \)[/tex]:
For [tex]\(\theta = \arcsin(\frac{2}{13})\)[/tex]:
[tex]\[ \cos(\arcsin(\frac{2}{13})) = \sqrt{1 - \left(\frac{2}{13}\right)^2} = \sqrt{\frac{169 - 4}{169}} = \sqrt{\frac{165}{169}} = \frac{\sqrt{165}}{13} \][/tex]

For [tex]\(\theta = \arcsin(\frac{3}{13})\)[/tex]:
[tex]\[ \cos(\arcsin(\frac{3}{13})) = \sqrt{1 - \left(\frac{3}{13}\right)^2} = \sqrt{\frac{169 - 9}{169}} = \sqrt{\frac{160}{169}} = \frac{\sqrt{160}}{13} \][/tex]

10. Substitute these values in:
[tex]\[ -13 \cdot \frac{\sqrt{160}}{13} - \left( -13 \cdot \frac{\sqrt{165}}{13} \right) \][/tex]

11. Combine and simplify:
[tex]\[ -\sqrt{160} + \sqrt{165} \][/tex]

Therefore, the value of the integral is:
[tex]\[ \boxed{-4\sqrt{10} + \sqrt{165}} \][/tex]