Get the answers you've been looking for with the help of IDNLearn.com's expert community. Ask anything and get well-informed, reliable answers from our knowledgeable community members.
Sagot :
To solve the problem of finding the binomial distribution for flipping a coin 3 times, where "heads" is considered a success, we will use the binomial probability formula:
[tex]\[ P(k \text{ successes}) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Here:
- [tex]\(n\)[/tex] is the number of trials (3 coin flips),
- [tex]\(k\)[/tex] is the number of successes (which can be 0, 1, 2, or 3),
- [tex]\(p\)[/tex] is the probability of success on a single trial (for heads in a fair coin, [tex]\(p = 0.5\)[/tex]),
- [tex]\(\binom{n}{k}\)[/tex] (read as "n choose k") is the binomial coefficient.
Let's calculate the probabilities for each value of [tex]\(k\)[/tex].
### 1. [tex]\(P(0 \text{ successes})\)[/tex]
[tex]\[ P(0 \text{ successes}) = \binom{3}{0} (0.5)^0 (0.5)^{3-0} \][/tex]
[tex]\[ P(0 \text{ successes}) = 1 \cdot 1 \cdot (0.5)^3 = 1 \cdot 1 \cdot 0.125 = 0.125 \][/tex]
### 2. [tex]\(P(1 \text{ success})\)[/tex]
[tex]\[ P(1 \text{ success}) = \binom{3}{1} (0.5)^1 (0.5)^{3-1} \][/tex]
[tex]\[ P(1 \text{ success}) = 3 \cdot 0.5 \cdot (0.5)^2 = 3 \cdot 0.5 \cdot 0.25 = 0.375 \][/tex]
### 3. [tex]\(P(2 \text{ successes})\)[/tex]
[tex]\[ P(2 \text{ successes}) = \binom{3}{2} (0.5)^2 (0.5)^{3-2} \][/tex]
[tex]\[ P(2 \text{ successes}) = 3 \cdot (0.5)^2 \cdot 0.5 = 3 \cdot 0.25 \cdot 0.5 = 0.375 \][/tex]
### 4. [tex]\(P(3 \text{ successes})\)[/tex]
[tex]\[ P(3 \text{ successes}) = \binom{3}{3} (0.5)^3 (0.5)^{3-3} \][/tex]
[tex]\[ P(3 \text{ successes}) = 1 \cdot (0.5)^3 \cdot 1 = 1 \cdot 0.125 \cdot 1 = 0.125 \][/tex]
Thus, the binomial distribution for flipping a coin 3 times, considering heads as a success, is as follows:
[tex]\[ P(0 \text{ successes}) = 0.125 \][/tex]
[tex]\[ P(1 \text{ success}) = 0.375 \][/tex]
[tex]\[ P(2 \text{ successes}) = 0.375 \][/tex]
[tex]\[ P(3 \text{ successes}) = 0.125 \][/tex]
[tex]\[ P(k \text{ successes}) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Here:
- [tex]\(n\)[/tex] is the number of trials (3 coin flips),
- [tex]\(k\)[/tex] is the number of successes (which can be 0, 1, 2, or 3),
- [tex]\(p\)[/tex] is the probability of success on a single trial (for heads in a fair coin, [tex]\(p = 0.5\)[/tex]),
- [tex]\(\binom{n}{k}\)[/tex] (read as "n choose k") is the binomial coefficient.
Let's calculate the probabilities for each value of [tex]\(k\)[/tex].
### 1. [tex]\(P(0 \text{ successes})\)[/tex]
[tex]\[ P(0 \text{ successes}) = \binom{3}{0} (0.5)^0 (0.5)^{3-0} \][/tex]
[tex]\[ P(0 \text{ successes}) = 1 \cdot 1 \cdot (0.5)^3 = 1 \cdot 1 \cdot 0.125 = 0.125 \][/tex]
### 2. [tex]\(P(1 \text{ success})\)[/tex]
[tex]\[ P(1 \text{ success}) = \binom{3}{1} (0.5)^1 (0.5)^{3-1} \][/tex]
[tex]\[ P(1 \text{ success}) = 3 \cdot 0.5 \cdot (0.5)^2 = 3 \cdot 0.5 \cdot 0.25 = 0.375 \][/tex]
### 3. [tex]\(P(2 \text{ successes})\)[/tex]
[tex]\[ P(2 \text{ successes}) = \binom{3}{2} (0.5)^2 (0.5)^{3-2} \][/tex]
[tex]\[ P(2 \text{ successes}) = 3 \cdot (0.5)^2 \cdot 0.5 = 3 \cdot 0.25 \cdot 0.5 = 0.375 \][/tex]
### 4. [tex]\(P(3 \text{ successes})\)[/tex]
[tex]\[ P(3 \text{ successes}) = \binom{3}{3} (0.5)^3 (0.5)^{3-3} \][/tex]
[tex]\[ P(3 \text{ successes}) = 1 \cdot (0.5)^3 \cdot 1 = 1 \cdot 0.125 \cdot 1 = 0.125 \][/tex]
Thus, the binomial distribution for flipping a coin 3 times, considering heads as a success, is as follows:
[tex]\[ P(0 \text{ successes}) = 0.125 \][/tex]
[tex]\[ P(1 \text{ success}) = 0.375 \][/tex]
[tex]\[ P(2 \text{ successes}) = 0.375 \][/tex]
[tex]\[ P(3 \text{ successes}) = 0.125 \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.