Connect with a knowledgeable community and get your questions answered on IDNLearn.com. Our Q&A platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
To solve the system of linear equations:
[tex]\[ \begin{cases} -2x + 14y = 148 \\ 3x + 5y = 246 \end{cases} \][/tex]
we can use Cramer's Rule, which provides a straightforward way to solve for each variable. The general form of Cramer's Rule for a 2x2 system is:
[tex]\[ x = \frac{\Delta_x}{\Delta} \quad \text{and} \quad y = \frac{\Delta_y}{\Delta} \][/tex]
where [tex]\(\Delta\)[/tex] is the determinant of the coefficient matrix, [tex]\(\Delta_x\)[/tex] is the determinant of the matrix formed by replacing the [tex]\(x\)[/tex]-column with the constants from the right-hand side, and [tex]\(\Delta_y\)[/tex] is the determinant of the matrix formed by replacing the [tex]\(y\)[/tex]-column with the constants from the right-hand side.
Let's define the matrices involved:
1. The coefficient matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} -2 & 14 \\ 3 & 5 \end{pmatrix} \][/tex]
2. The determinant [tex]\(\Delta\)[/tex] of matrix [tex]\(A\)[/tex]:
[tex]\[ \Delta = \left| \begin{array}{cc} -2 & 14 \\ 3 & 5 \end{array} \right| = (-2 \cdot 5) - (14 \cdot 3) = -10 - 42 = -52 \][/tex]
3. The matrix [tex]\(B_1\)[/tex] to solve for [tex]\(x\)[/tex], replacing the first column of [tex]\(A\)[/tex] with the constants:
[tex]\[ B_1 = \begin{pmatrix} 148 & 14 \\ 246 & 5 \end{pmatrix} \][/tex]
The determinant [tex]\(\Delta_x\)[/tex]:
[tex]\[ \Delta_x = \left| \begin{array}{cc} 148 & 14 \\ 246 & 5 \end{array} \right| = (148 \cdot 5) - (14 \cdot 246) = 740 - 3444 = -2704 \][/tex]
4. The matrix [tex]\(B_2\)[/tex] to solve for [tex]\(y\)[/tex], replacing the second column of [tex]\(A\)[/tex] with the constants:
[tex]\[ B_2 = \begin{pmatrix} -2 & 148 \\ 3 & 246 \end{pmatrix} \][/tex]
The determinant [tex]\(\Delta_y\)[/tex]:
[tex]\[ \Delta_y = \left| \begin{array}{cc} -2 & 148 \\ 3 & 246 \end{array} \right| = (-2 \cdot 246) - (148 \cdot 3) = -492 - 444 = -936 \][/tex]
Now, apply Cramer's Rule to find [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x = \frac{\Delta_x}{\Delta} = \frac{-2704}{-52} = 52 \][/tex]
[tex]\[ y = \frac{\Delta_y}{\Delta} = \frac{-936}{-52} = 18 \][/tex]
Thus, we can determine the [tex]\(x\)[/tex]-value of the solution to the system of linear equations using the equation:
[tex]\[ x = \frac{\left| \begin{array}{cc} 148 & 14 \\ 246 & 5 \end{array} \right|}{\left| \begin{array}{cc} -2 & 14 \\ 3 & 5 \end{array} \right|} = 52 \][/tex]
Therefore, the equation that can be used to determine the [tex]\(x\)[/tex]-value of the solution is:
[tex]\[ \frac{\left| \begin{array}{cc} 148 & 14 \\ 246 & 5 \end{array} \right|}{\left| \begin{array}{cc} -2 & 14 \\ 3 & 5 \end{array} \right|} = 52 \][/tex]
[tex]\[ \begin{cases} -2x + 14y = 148 \\ 3x + 5y = 246 \end{cases} \][/tex]
we can use Cramer's Rule, which provides a straightforward way to solve for each variable. The general form of Cramer's Rule for a 2x2 system is:
[tex]\[ x = \frac{\Delta_x}{\Delta} \quad \text{and} \quad y = \frac{\Delta_y}{\Delta} \][/tex]
where [tex]\(\Delta\)[/tex] is the determinant of the coefficient matrix, [tex]\(\Delta_x\)[/tex] is the determinant of the matrix formed by replacing the [tex]\(x\)[/tex]-column with the constants from the right-hand side, and [tex]\(\Delta_y\)[/tex] is the determinant of the matrix formed by replacing the [tex]\(y\)[/tex]-column with the constants from the right-hand side.
Let's define the matrices involved:
1. The coefficient matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} -2 & 14 \\ 3 & 5 \end{pmatrix} \][/tex]
2. The determinant [tex]\(\Delta\)[/tex] of matrix [tex]\(A\)[/tex]:
[tex]\[ \Delta = \left| \begin{array}{cc} -2 & 14 \\ 3 & 5 \end{array} \right| = (-2 \cdot 5) - (14 \cdot 3) = -10 - 42 = -52 \][/tex]
3. The matrix [tex]\(B_1\)[/tex] to solve for [tex]\(x\)[/tex], replacing the first column of [tex]\(A\)[/tex] with the constants:
[tex]\[ B_1 = \begin{pmatrix} 148 & 14 \\ 246 & 5 \end{pmatrix} \][/tex]
The determinant [tex]\(\Delta_x\)[/tex]:
[tex]\[ \Delta_x = \left| \begin{array}{cc} 148 & 14 \\ 246 & 5 \end{array} \right| = (148 \cdot 5) - (14 \cdot 246) = 740 - 3444 = -2704 \][/tex]
4. The matrix [tex]\(B_2\)[/tex] to solve for [tex]\(y\)[/tex], replacing the second column of [tex]\(A\)[/tex] with the constants:
[tex]\[ B_2 = \begin{pmatrix} -2 & 148 \\ 3 & 246 \end{pmatrix} \][/tex]
The determinant [tex]\(\Delta_y\)[/tex]:
[tex]\[ \Delta_y = \left| \begin{array}{cc} -2 & 148 \\ 3 & 246 \end{array} \right| = (-2 \cdot 246) - (148 \cdot 3) = -492 - 444 = -936 \][/tex]
Now, apply Cramer's Rule to find [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x = \frac{\Delta_x}{\Delta} = \frac{-2704}{-52} = 52 \][/tex]
[tex]\[ y = \frac{\Delta_y}{\Delta} = \frac{-936}{-52} = 18 \][/tex]
Thus, we can determine the [tex]\(x\)[/tex]-value of the solution to the system of linear equations using the equation:
[tex]\[ x = \frac{\left| \begin{array}{cc} 148 & 14 \\ 246 & 5 \end{array} \right|}{\left| \begin{array}{cc} -2 & 14 \\ 3 & 5 \end{array} \right|} = 52 \][/tex]
Therefore, the equation that can be used to determine the [tex]\(x\)[/tex]-value of the solution is:
[tex]\[ \frac{\left| \begin{array}{cc} 148 & 14 \\ 246 & 5 \end{array} \right|}{\left| \begin{array}{cc} -2 & 14 \\ 3 & 5 \end{array} \right|} = 52 \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.