Get detailed and accurate responses to your questions on IDNLearn.com. Find reliable solutions to your questions quickly and accurately with help from our dedicated community of experts.

Calculate the equilibrium constant at [tex]25^{\circ} C[/tex] for the reaction of methane with water to form carbon dioxide and hydrogen. The data refer to [tex]25^{\circ} C[/tex].

[tex]\[ CH_4(g) + 2H_2O(g) \rightarrow CO_2(g) + 4H_2(g) \][/tex]

\begin{tabular}{lrrrl}
Substance: & \([tex]CH_4(g)[/tex]\) & \([tex]H_2O(g)[/tex]\) & [tex]\([tex]CO_2(g)[/tex]\)[/tex] & \([tex]H_2(g)[/tex]\) \\
[tex]\(\Delta H_f (kJ/mol):\)[/tex] & -74.87 & -241.8 & -393.5 & 0 \\
[tex]\(\Delta G^{\circ}_f (kJ/mol):\)[/tex] & -50.81 & -228.6 & -394.4 & 0 \\
[tex]\(\left. S^{\circ} (J/K \cdot mol) \right):\)[/tex] & 186.1 & 188.8 & 213.7 & 130.7
\end{tabular}

A. \([tex]8.2 \times 10^{19}[/tex]\)

B. 0.96

C. 0.58

D. \([tex]1.2 \times 10^{-20}[/tex]\)

E. [tex]\([tex]1.4 \times 10^{-46}[/tex]\)[/tex]


Sagot :

To solve this problem, let's determine the equilibrium constant ([tex]\( K \)[/tex]) for the given reaction at [tex]\( 25^{\circ}C \)[/tex].

Given the reaction:
[tex]\[ CH_4(g) + 2H_2O(g) \rightarrow CO_2(g) + 4H_2(g) \][/tex]

We need to follow these steps:

1. Calculate the standard Gibbs free energy change ([tex]\( \Delta G^{\circ}_{\text{reaction}} \)[/tex]).

The standard Gibbs free energy change for a reaction is given by:
[tex]\[ \Delta G^{\circ}_{\text{reaction}} = \Sigma \Delta G_f^{\circ}(\text{products}) - \Sigma \Delta G_f^{\circ}(\text{reactants}) \][/tex]

Using the Gibbs free energy of formation ([tex]\( \Delta G_f^{\circ} \)[/tex]) values from the table:
- For [tex]\( CO_2(g) \)[/tex]: [tex]\( \Delta G_f^{\circ} = -394.4 \)[/tex] kJ/mol
- For [tex]\( H_2(g) \)[/tex]: [tex]\( \Delta G_f^{\circ} = 0 \)[/tex] kJ/mol
- For [tex]\( CH_4(g) \)[/tex]: [tex]\( \Delta G_f^{\circ} = -50.81 \)[/tex] kJ/mol
- For [tex]\( H_2O(g) \)[/tex]: [tex]\( \Delta G_f^{\circ} = -228.6 \)[/tex] kJ/mol

Substituting these values into the equation:
[tex]\[ \Delta G^{\circ}_{\text{reaction}} = \left( \Delta G_f^{\circ}(CO_2) + 4 \times \Delta G_f^{\circ}(H_2) \right) - \left( \Delta G_f^{\circ}(CH_4) + 2 \times \Delta G_f^{\circ}(H_2O) \right) \][/tex]
[tex]\[ \Delta G^{\circ}_{\text{reaction}} = \left( -394.4 + 4 \times 0 \right) - \left( -50.81 + 2 \times -228.6 \right) \][/tex]
[tex]\[ \Delta G^{\circ}_{\text{reaction}} = -394.4 - (-50.81 - 457.2) \][/tex]
[tex]\[ \Delta G^{\circ}_{\text{reaction}} = -394.4 + 50.81 + 457.2 \][/tex]
[tex]\[ \Delta G^{\circ}_{\text{reaction}} = 113.61 \ \text{kJ/mol} \][/tex]

2. Convert [tex]\( \Delta G^{\circ}_{\text{reaction}} \)[/tex] into joules:

[tex]\[ \Delta G^{\circ}_{\text{reaction}} = 113.61 \ \text{kJ/mol} \times 1000 \ (\text{J/kJ}) \][/tex]
[tex]\[ \Delta G^{\circ}_{\text{reaction}} = 113610 \ \text{J/mol} \][/tex]

3. Calculate the equilibrium constant [tex]\( K \)[/tex]:

The relation between Gibbs free energy change and the equilibrium constant is given by:
[tex]\[ \Delta G^{\circ}_{\text{reaction}} = -RT \ln K \][/tex]

Where:
- [tex]\( R \)[/tex] is the universal gas constant ([tex]\( 8.314 \ \text{J/K} \cdot \text{mol} \)[/tex])
- [tex]\( T \)[/tex] is the temperature in Kelvin ([tex]\( 25^{\circ}C = 298.15 \ \text{K} \)[/tex])

Rearranging the equation for [tex]\( K \)[/tex]:
[tex]\[ K = \exp\left( -\frac{\Delta G^{\circ}_{\text{reaction}}}{RT} \right) \][/tex]
[tex]\[ K = \exp\left( -\frac{113610 \ \text{J/mol}}{8.314 \ \text{J/K} \cdot \text{mol} \times 298.15 \ \text{K}} \right) \][/tex]
[tex]\[ K = \exp\left( -\frac{113610}{2476.9} \right) \][/tex]
[tex]\[ K = \exp\left( -45.867 \right) \][/tex]
[tex]\[ K = 1.2453218972075848 \times 10^{-20} \][/tex]

So, the equilibrium constant [tex]\( K \)[/tex] for the reaction is:
[tex]\[ K = 1.245 \times 10^{-20} \][/tex]

The correct answer from the multiple choice options is:
[tex]\[ \boxed{1.2 \times 10^{-20}} \][/tex]