IDNLearn.com makes it easy to find the right answers to your questions. Find in-depth and accurate answers to all your questions from our knowledgeable and dedicated community members.
Sagot :
Certainly! Let's go through the problem step-by-step to understand how we arrive at the answer.
We are given that the equation for the line of best fit is [tex]\( y = 2x + 1.5 \)[/tex], and we are to find the residual for the given data point [tex]\((1, 4)\)[/tex].
### Step 1: Calculate the Predicted [tex]\( y \)[/tex] Value
First, we need to determine the predicted [tex]\( y \)[/tex] value based on the line of best fit for the given [tex]\( x \)[/tex]-coordinate. In this case, [tex]\( x = 1 \)[/tex].
Using the equation [tex]\( y = 2x + 1.5 \)[/tex]:
[tex]\[ y_{\text{predicted}} = 2(1) + 1.5 = 2 + 1.5 = 3.5 \][/tex]
### Step 2: Determine the Observed [tex]\( y \)[/tex] Value
The observed [tex]\( y \)[/tex]-value is given as part of the data point [tex]\((1, 4)\)[/tex], so:
[tex]\[ y_{\text{observed}} = 4 \][/tex]
### Step 3: Calculate the Residual
The residual is the difference between the observed [tex]\( y \)[/tex]-value and the predicted [tex]\( y \)[/tex]-value:
[tex]\[ \text{Residual} = y_{\text{observed}} - y_{\text{predicted}} = 4 - 3.5 = 0.5 \][/tex]
### Step 4: Conclusion
The residual, which is the difference between the observed value and the predicted value, is [tex]\( 0.5 \)[/tex].
Therefore, the correct answer is [tex]\(\boxed{0.5}\)[/tex].
We are given that the equation for the line of best fit is [tex]\( y = 2x + 1.5 \)[/tex], and we are to find the residual for the given data point [tex]\((1, 4)\)[/tex].
### Step 1: Calculate the Predicted [tex]\( y \)[/tex] Value
First, we need to determine the predicted [tex]\( y \)[/tex] value based on the line of best fit for the given [tex]\( x \)[/tex]-coordinate. In this case, [tex]\( x = 1 \)[/tex].
Using the equation [tex]\( y = 2x + 1.5 \)[/tex]:
[tex]\[ y_{\text{predicted}} = 2(1) + 1.5 = 2 + 1.5 = 3.5 \][/tex]
### Step 2: Determine the Observed [tex]\( y \)[/tex] Value
The observed [tex]\( y \)[/tex]-value is given as part of the data point [tex]\((1, 4)\)[/tex], so:
[tex]\[ y_{\text{observed}} = 4 \][/tex]
### Step 3: Calculate the Residual
The residual is the difference between the observed [tex]\( y \)[/tex]-value and the predicted [tex]\( y \)[/tex]-value:
[tex]\[ \text{Residual} = y_{\text{observed}} - y_{\text{predicted}} = 4 - 3.5 = 0.5 \][/tex]
### Step 4: Conclusion
The residual, which is the difference between the observed value and the predicted value, is [tex]\( 0.5 \)[/tex].
Therefore, the correct answer is [tex]\(\boxed{0.5}\)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.