IDNLearn.com: Where your questions meet expert answers and community support. Our platform provides accurate, detailed responses to help you navigate any topic with ease.
Sagot :
Sure, I'll walk you through the step-by-step solution for calculating the reduction potential [tex]\( E_{\text{red}} \)[/tex] for the given half-cell reaction involving [tex]\( \text{Cr}_2\text{O}_7^{2-} \)[/tex] and [tex]\( \text{Cr}^{3+} \)[/tex].
### Step-by-Step Solution:
1. Identify Given Data:
- Standard electrode potential, [tex]\( E^\circ = 1.5 \)[/tex] V
- Concentration of [tex]\( \text{Cr}_2\text{O}_7^{2-} \)[/tex] is [tex]\( 4 \times 10^{-4} \)[/tex] M
- Concentration of [tex]\( \text{Cr}^{3+} \)[/tex] is [tex]\( 2 \times 10^{-2} \)[/tex] M
- pH of the solution is 1
2. Determine the number of electrons transferred ([tex]\( n \)[/tex]):
The balanced reaction is:
[tex]\[ \text{Cr}_2\text{O}_7^{2-} + 14 \text{H}^+ + 6 \text{e}^- \rightarrow 2 \text{Cr}^{3+} + 7 \text{H}_2\text{O} \][/tex]
From this equation, we see that 6 electrons ([tex]\( n = 6 \)[/tex]) are transferred in the reaction.
3. Calculate the concentration of [tex]\(\text{H}^+\)[/tex] from pH:
The pH is given as 1. Using the definition of pH:
[tex]\[ \text{pH} = -\log[\text{H}^+] \][/tex]
Thus,
[tex]\[ [\text{H}^+] = 10^{-1} = 0.1 \text{ M} \][/tex]
4. Calculate the reaction quotient ([tex]\( Q \)[/tex]):
The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q = \frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}] \cdot [\text{H}^+]^{14}} \][/tex]
Plugging in the given concentrations:
[tex]\[ [\text{Cr}_2\text{O}_7^{2-}] = 4 \times 10^{-4} \text{ M} \][/tex]
[tex]\[ [\text{Cr}^{3+}] = 2 \times 10^{-2} \text{ M} \][/tex]
[tex]\[ [\text{H}^+] = 0.1 \text{ M} \][/tex]
Thus,
[tex]\[ Q = \frac{(2 \times 10^{-2})^2}{(4 \times 10^{-4}) \cdot (0.1)^{14}} \][/tex]
Simplifying:
[tex]\[ Q = \frac{4 \times 10^{-4}}{4 \times 10^{-4} \cdot 10^{-14}} = \frac{4 \times 10^{-4}}{4 \times 10^{-18}} = 10^{14} = 99999999999999.92 \][/tex]
5. Use the Nernst Equation to find [tex]\( E_{\text{red}} \)[/tex]:
The Nernst equation is:
[tex]\[ E = E^\circ - \frac{0.0591}{n} \log_{10}(Q) \][/tex]
Substituting the known values:
[tex]\[ E = 1.5 - \frac{0.0591}{6} \log_{10}(99999999999999.92) \][/tex]
Evaluate the term:
[tex]\[ \log_{10}(99999999999999.92) \approx 14 \][/tex]
So,
[tex]\[ E = 1.5 - \frac{0.0591}{6} \times 14 = 1.5 - 0.1379 = 1.3621 \text{ V} \][/tex]
### Final Answer:
The reduction potential [tex]\( E_{\text{red}} \)[/tex] for the given half-cell reaction is [tex]\( 1.3621 \text{ V} \)[/tex].
### Step-by-Step Solution:
1. Identify Given Data:
- Standard electrode potential, [tex]\( E^\circ = 1.5 \)[/tex] V
- Concentration of [tex]\( \text{Cr}_2\text{O}_7^{2-} \)[/tex] is [tex]\( 4 \times 10^{-4} \)[/tex] M
- Concentration of [tex]\( \text{Cr}^{3+} \)[/tex] is [tex]\( 2 \times 10^{-2} \)[/tex] M
- pH of the solution is 1
2. Determine the number of electrons transferred ([tex]\( n \)[/tex]):
The balanced reaction is:
[tex]\[ \text{Cr}_2\text{O}_7^{2-} + 14 \text{H}^+ + 6 \text{e}^- \rightarrow 2 \text{Cr}^{3+} + 7 \text{H}_2\text{O} \][/tex]
From this equation, we see that 6 electrons ([tex]\( n = 6 \)[/tex]) are transferred in the reaction.
3. Calculate the concentration of [tex]\(\text{H}^+\)[/tex] from pH:
The pH is given as 1. Using the definition of pH:
[tex]\[ \text{pH} = -\log[\text{H}^+] \][/tex]
Thus,
[tex]\[ [\text{H}^+] = 10^{-1} = 0.1 \text{ M} \][/tex]
4. Calculate the reaction quotient ([tex]\( Q \)[/tex]):
The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q = \frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}] \cdot [\text{H}^+]^{14}} \][/tex]
Plugging in the given concentrations:
[tex]\[ [\text{Cr}_2\text{O}_7^{2-}] = 4 \times 10^{-4} \text{ M} \][/tex]
[tex]\[ [\text{Cr}^{3+}] = 2 \times 10^{-2} \text{ M} \][/tex]
[tex]\[ [\text{H}^+] = 0.1 \text{ M} \][/tex]
Thus,
[tex]\[ Q = \frac{(2 \times 10^{-2})^2}{(4 \times 10^{-4}) \cdot (0.1)^{14}} \][/tex]
Simplifying:
[tex]\[ Q = \frac{4 \times 10^{-4}}{4 \times 10^{-4} \cdot 10^{-14}} = \frac{4 \times 10^{-4}}{4 \times 10^{-18}} = 10^{14} = 99999999999999.92 \][/tex]
5. Use the Nernst Equation to find [tex]\( E_{\text{red}} \)[/tex]:
The Nernst equation is:
[tex]\[ E = E^\circ - \frac{0.0591}{n} \log_{10}(Q) \][/tex]
Substituting the known values:
[tex]\[ E = 1.5 - \frac{0.0591}{6} \log_{10}(99999999999999.92) \][/tex]
Evaluate the term:
[tex]\[ \log_{10}(99999999999999.92) \approx 14 \][/tex]
So,
[tex]\[ E = 1.5 - \frac{0.0591}{6} \times 14 = 1.5 - 0.1379 = 1.3621 \text{ V} \][/tex]
### Final Answer:
The reduction potential [tex]\( E_{\text{red}} \)[/tex] for the given half-cell reaction is [tex]\( 1.3621 \text{ V} \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Find the answers you need at IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.