IDNLearn.com: Where your questions are met with thoughtful and precise answers. Ask your questions and receive accurate, in-depth answers from our knowledgeable community members.
Sagot :
Para analisar a continuidade e a derivabilidade da função [tex]\( f \)[/tex] no ponto [tex]\( x=0 \)[/tex], vamos seguir os passos abaixo:
### Parte (a): Verificar se [tex]\( f \)[/tex] é contínua no ponto [tex]\( x=0 \)[/tex]
Primeiramente, a função [tex]\( f \)[/tex] é dada por:
[tex]\[ f(x)=\begin{cases} 1 + x \exp(x+1), & \text{se } x \leq 0 \\ 1 - x - \ln(x+1), & \text{se } x > 0 \end{cases} \][/tex]
Para que [tex]\( f \)[/tex] seja contínua em [tex]\( x=0 \)[/tex], a função deve satisfazer as seguintes condições:
1. O limite da função quando [tex]\( x \)[/tex] se aproxima de 0 pela esquerda deve existir e ser igual ao valor da função em [tex]\( x=0 \)[/tex].
2. O limite da função quando [tex]\( x \)[/tex] se aproxima de 0 pela direita deve existir e ser igual ao valor da função em [tex]\( x=0 \)[/tex].
3. Os limites laterais devem ser iguais.
Passo 1. Limite quando [tex]\( x \)[/tex] se aproxima de 0 pela esquerda ([tex]\( x \leq 0 \)[/tex]):
[tex]\[ \lim_{{x \to 0^-}} f(x) = \lim_{{x \to 0^-}} (1 + x \exp(x+1)) \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ \lim_{{x \to 0^-}} f(x) = 1 + 0 \cdot \exp(0+1) = 1 \][/tex]
Passo 2. Limite quando [tex]\( x \)[/tex] se aproxima de 0 pela direita ([tex]\( x > 0 \)[/tex]):
[tex]\[ \lim_{{x \to 0^+}} f(x) = \lim_{{x \to 0^+}} (1 - x - \ln(x+1)) \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ \lim_{{x \to 0^+}} f(x) = 1 - 0 - \ln(1) = 1 \][/tex]
Passo 3. Valor da função em [tex]\( x=0 \)[/tex]:
Como [tex]\( x \leq 0 \)[/tex], usamos a primeira parte da função:
[tex]\[ f(0) = 1 + 0 \cdot \exp(0 + 1) = 1 \][/tex]
Já que:
[tex]\[ \lim_{{x \to 0^-}} f(x) = 1 \][/tex]
[tex]\[ \lim_{{x \to 0^+}} f(x) = 1 \][/tex]
[tex]\[ f(0) = 1 \][/tex]
Podemos concluir que:
[tex]\[ \lim_{{x \to 0}} f(x) = f(0) = 1 \][/tex]
Portanto, [tex]\( f \)[/tex] é contínua no ponto [tex]\( x=0 \)[/tex].
### Parte (b): Verificar se [tex]\( f \)[/tex] é derivável no ponto [tex]\( x=0 \)[/tex]
Para que [tex]\( f \)[/tex] seja derivável em [tex]\( x=0 \)[/tex], os limites laterais das derivadas à esquerda e à direita em [tex]\( x=0 \)[/tex] devem existir e ser iguais.
Derivada quando [tex]\( x \leq 0 \)[/tex]:
[tex]\[ f(x) = 1 + x \exp(x+1) \][/tex]
Utilizamos a regra do produto para derivar:
[tex]\[ f'(x) = \exp(x+1) + x \exp(x+1) \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ f'(0) = \exp(0+1) + 0 \cdot \exp(0+1) = e \approx 2.718281828459045 \][/tex]
Derivada quando [tex]\( x > 0 \)[/tex]:
[tex]\[ f(x) = 1 - x - \ln(x+1) \][/tex]
Derivando:
[tex]\[ f'(x) = -1 - \frac{1}{x+1} \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ f'(0) = -1 - \frac{1}{0+1} = -2 \][/tex]
Como as derivadas laterais não são iguais:
[tex]\[ f'(0^-) = 2.718281828459045 \][/tex]
[tex]\[ f'(0^+) = -2 \][/tex]
Concluímos que [tex]\( f \)[/tex] não é derivável em [tex]\( x=0 \)[/tex].
### Parte (a): Verificar se [tex]\( f \)[/tex] é contínua no ponto [tex]\( x=0 \)[/tex]
Primeiramente, a função [tex]\( f \)[/tex] é dada por:
[tex]\[ f(x)=\begin{cases} 1 + x \exp(x+1), & \text{se } x \leq 0 \\ 1 - x - \ln(x+1), & \text{se } x > 0 \end{cases} \][/tex]
Para que [tex]\( f \)[/tex] seja contínua em [tex]\( x=0 \)[/tex], a função deve satisfazer as seguintes condições:
1. O limite da função quando [tex]\( x \)[/tex] se aproxima de 0 pela esquerda deve existir e ser igual ao valor da função em [tex]\( x=0 \)[/tex].
2. O limite da função quando [tex]\( x \)[/tex] se aproxima de 0 pela direita deve existir e ser igual ao valor da função em [tex]\( x=0 \)[/tex].
3. Os limites laterais devem ser iguais.
Passo 1. Limite quando [tex]\( x \)[/tex] se aproxima de 0 pela esquerda ([tex]\( x \leq 0 \)[/tex]):
[tex]\[ \lim_{{x \to 0^-}} f(x) = \lim_{{x \to 0^-}} (1 + x \exp(x+1)) \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ \lim_{{x \to 0^-}} f(x) = 1 + 0 \cdot \exp(0+1) = 1 \][/tex]
Passo 2. Limite quando [tex]\( x \)[/tex] se aproxima de 0 pela direita ([tex]\( x > 0 \)[/tex]):
[tex]\[ \lim_{{x \to 0^+}} f(x) = \lim_{{x \to 0^+}} (1 - x - \ln(x+1)) \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ \lim_{{x \to 0^+}} f(x) = 1 - 0 - \ln(1) = 1 \][/tex]
Passo 3. Valor da função em [tex]\( x=0 \)[/tex]:
Como [tex]\( x \leq 0 \)[/tex], usamos a primeira parte da função:
[tex]\[ f(0) = 1 + 0 \cdot \exp(0 + 1) = 1 \][/tex]
Já que:
[tex]\[ \lim_{{x \to 0^-}} f(x) = 1 \][/tex]
[tex]\[ \lim_{{x \to 0^+}} f(x) = 1 \][/tex]
[tex]\[ f(0) = 1 \][/tex]
Podemos concluir que:
[tex]\[ \lim_{{x \to 0}} f(x) = f(0) = 1 \][/tex]
Portanto, [tex]\( f \)[/tex] é contínua no ponto [tex]\( x=0 \)[/tex].
### Parte (b): Verificar se [tex]\( f \)[/tex] é derivável no ponto [tex]\( x=0 \)[/tex]
Para que [tex]\( f \)[/tex] seja derivável em [tex]\( x=0 \)[/tex], os limites laterais das derivadas à esquerda e à direita em [tex]\( x=0 \)[/tex] devem existir e ser iguais.
Derivada quando [tex]\( x \leq 0 \)[/tex]:
[tex]\[ f(x) = 1 + x \exp(x+1) \][/tex]
Utilizamos a regra do produto para derivar:
[tex]\[ f'(x) = \exp(x+1) + x \exp(x+1) \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ f'(0) = \exp(0+1) + 0 \cdot \exp(0+1) = e \approx 2.718281828459045 \][/tex]
Derivada quando [tex]\( x > 0 \)[/tex]:
[tex]\[ f(x) = 1 - x - \ln(x+1) \][/tex]
Derivando:
[tex]\[ f'(x) = -1 - \frac{1}{x+1} \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ f'(0) = -1 - \frac{1}{0+1} = -2 \][/tex]
Como as derivadas laterais não são iguais:
[tex]\[ f'(0^-) = 2.718281828459045 \][/tex]
[tex]\[ f'(0^+) = -2 \][/tex]
Concluímos que [tex]\( f \)[/tex] não é derivável em [tex]\( x=0 \)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.