IDNLearn.com provides a seamless experience for finding the answers you need. Our experts are ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
Para analisar a continuidade e a derivabilidade da função [tex]\( f \)[/tex] no ponto [tex]\( x=0 \)[/tex], vamos seguir os passos abaixo:
### Parte (a): Verificar se [tex]\( f \)[/tex] é contínua no ponto [tex]\( x=0 \)[/tex]
Primeiramente, a função [tex]\( f \)[/tex] é dada por:
[tex]\[ f(x)=\begin{cases} 1 + x \exp(x+1), & \text{se } x \leq 0 \\ 1 - x - \ln(x+1), & \text{se } x > 0 \end{cases} \][/tex]
Para que [tex]\( f \)[/tex] seja contínua em [tex]\( x=0 \)[/tex], a função deve satisfazer as seguintes condições:
1. O limite da função quando [tex]\( x \)[/tex] se aproxima de 0 pela esquerda deve existir e ser igual ao valor da função em [tex]\( x=0 \)[/tex].
2. O limite da função quando [tex]\( x \)[/tex] se aproxima de 0 pela direita deve existir e ser igual ao valor da função em [tex]\( x=0 \)[/tex].
3. Os limites laterais devem ser iguais.
Passo 1. Limite quando [tex]\( x \)[/tex] se aproxima de 0 pela esquerda ([tex]\( x \leq 0 \)[/tex]):
[tex]\[ \lim_{{x \to 0^-}} f(x) = \lim_{{x \to 0^-}} (1 + x \exp(x+1)) \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ \lim_{{x \to 0^-}} f(x) = 1 + 0 \cdot \exp(0+1) = 1 \][/tex]
Passo 2. Limite quando [tex]\( x \)[/tex] se aproxima de 0 pela direita ([tex]\( x > 0 \)[/tex]):
[tex]\[ \lim_{{x \to 0^+}} f(x) = \lim_{{x \to 0^+}} (1 - x - \ln(x+1)) \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ \lim_{{x \to 0^+}} f(x) = 1 - 0 - \ln(1) = 1 \][/tex]
Passo 3. Valor da função em [tex]\( x=0 \)[/tex]:
Como [tex]\( x \leq 0 \)[/tex], usamos a primeira parte da função:
[tex]\[ f(0) = 1 + 0 \cdot \exp(0 + 1) = 1 \][/tex]
Já que:
[tex]\[ \lim_{{x \to 0^-}} f(x) = 1 \][/tex]
[tex]\[ \lim_{{x \to 0^+}} f(x) = 1 \][/tex]
[tex]\[ f(0) = 1 \][/tex]
Podemos concluir que:
[tex]\[ \lim_{{x \to 0}} f(x) = f(0) = 1 \][/tex]
Portanto, [tex]\( f \)[/tex] é contínua no ponto [tex]\( x=0 \)[/tex].
### Parte (b): Verificar se [tex]\( f \)[/tex] é derivável no ponto [tex]\( x=0 \)[/tex]
Para que [tex]\( f \)[/tex] seja derivável em [tex]\( x=0 \)[/tex], os limites laterais das derivadas à esquerda e à direita em [tex]\( x=0 \)[/tex] devem existir e ser iguais.
Derivada quando [tex]\( x \leq 0 \)[/tex]:
[tex]\[ f(x) = 1 + x \exp(x+1) \][/tex]
Utilizamos a regra do produto para derivar:
[tex]\[ f'(x) = \exp(x+1) + x \exp(x+1) \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ f'(0) = \exp(0+1) + 0 \cdot \exp(0+1) = e \approx 2.718281828459045 \][/tex]
Derivada quando [tex]\( x > 0 \)[/tex]:
[tex]\[ f(x) = 1 - x - \ln(x+1) \][/tex]
Derivando:
[tex]\[ f'(x) = -1 - \frac{1}{x+1} \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ f'(0) = -1 - \frac{1}{0+1} = -2 \][/tex]
Como as derivadas laterais não são iguais:
[tex]\[ f'(0^-) = 2.718281828459045 \][/tex]
[tex]\[ f'(0^+) = -2 \][/tex]
Concluímos que [tex]\( f \)[/tex] não é derivável em [tex]\( x=0 \)[/tex].
### Parte (a): Verificar se [tex]\( f \)[/tex] é contínua no ponto [tex]\( x=0 \)[/tex]
Primeiramente, a função [tex]\( f \)[/tex] é dada por:
[tex]\[ f(x)=\begin{cases} 1 + x \exp(x+1), & \text{se } x \leq 0 \\ 1 - x - \ln(x+1), & \text{se } x > 0 \end{cases} \][/tex]
Para que [tex]\( f \)[/tex] seja contínua em [tex]\( x=0 \)[/tex], a função deve satisfazer as seguintes condições:
1. O limite da função quando [tex]\( x \)[/tex] se aproxima de 0 pela esquerda deve existir e ser igual ao valor da função em [tex]\( x=0 \)[/tex].
2. O limite da função quando [tex]\( x \)[/tex] se aproxima de 0 pela direita deve existir e ser igual ao valor da função em [tex]\( x=0 \)[/tex].
3. Os limites laterais devem ser iguais.
Passo 1. Limite quando [tex]\( x \)[/tex] se aproxima de 0 pela esquerda ([tex]\( x \leq 0 \)[/tex]):
[tex]\[ \lim_{{x \to 0^-}} f(x) = \lim_{{x \to 0^-}} (1 + x \exp(x+1)) \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ \lim_{{x \to 0^-}} f(x) = 1 + 0 \cdot \exp(0+1) = 1 \][/tex]
Passo 2. Limite quando [tex]\( x \)[/tex] se aproxima de 0 pela direita ([tex]\( x > 0 \)[/tex]):
[tex]\[ \lim_{{x \to 0^+}} f(x) = \lim_{{x \to 0^+}} (1 - x - \ln(x+1)) \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ \lim_{{x \to 0^+}} f(x) = 1 - 0 - \ln(1) = 1 \][/tex]
Passo 3. Valor da função em [tex]\( x=0 \)[/tex]:
Como [tex]\( x \leq 0 \)[/tex], usamos a primeira parte da função:
[tex]\[ f(0) = 1 + 0 \cdot \exp(0 + 1) = 1 \][/tex]
Já que:
[tex]\[ \lim_{{x \to 0^-}} f(x) = 1 \][/tex]
[tex]\[ \lim_{{x \to 0^+}} f(x) = 1 \][/tex]
[tex]\[ f(0) = 1 \][/tex]
Podemos concluir que:
[tex]\[ \lim_{{x \to 0}} f(x) = f(0) = 1 \][/tex]
Portanto, [tex]\( f \)[/tex] é contínua no ponto [tex]\( x=0 \)[/tex].
### Parte (b): Verificar se [tex]\( f \)[/tex] é derivável no ponto [tex]\( x=0 \)[/tex]
Para que [tex]\( f \)[/tex] seja derivável em [tex]\( x=0 \)[/tex], os limites laterais das derivadas à esquerda e à direita em [tex]\( x=0 \)[/tex] devem existir e ser iguais.
Derivada quando [tex]\( x \leq 0 \)[/tex]:
[tex]\[ f(x) = 1 + x \exp(x+1) \][/tex]
Utilizamos a regra do produto para derivar:
[tex]\[ f'(x) = \exp(x+1) + x \exp(x+1) \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ f'(0) = \exp(0+1) + 0 \cdot \exp(0+1) = e \approx 2.718281828459045 \][/tex]
Derivada quando [tex]\( x > 0 \)[/tex]:
[tex]\[ f(x) = 1 - x - \ln(x+1) \][/tex]
Derivando:
[tex]\[ f'(x) = -1 - \frac{1}{x+1} \][/tex]
Substituindo [tex]\( x=0 \)[/tex]:
[tex]\[ f'(0) = -1 - \frac{1}{0+1} = -2 \][/tex]
Como as derivadas laterais não são iguais:
[tex]\[ f'(0^-) = 2.718281828459045 \][/tex]
[tex]\[ f'(0^+) = -2 \][/tex]
Concluímos que [tex]\( f \)[/tex] não é derivável em [tex]\( x=0 \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.