Find trusted answers to your questions with the help of IDNLearn.com's knowledgeable community. Discover prompt and accurate answers from our community of experienced professionals.
Sagot :
To determine the temperature at which 192 g of SO[tex]\(_2\)[/tex] would occupy a volume of 6 dm[tex]\(^3\)[/tex] at a pressure of 15 atm using the Van der Waals equation, follow these steps:
### Step 1: Understand the Given Data
1. Van der Waals constants for SO[tex]\(_2\)[/tex]:
- [tex]\(a = 6.865\)[/tex] atm·L[tex]\(^2\)[/tex]/mol[tex]\(^2\)[/tex]
- [tex]\(b = 0.05679\)[/tex] L/mol
2. Given values:
- Pressure, [tex]\(P = 15\)[/tex] atm
- Volume, [tex]\(V = 6\)[/tex] dm[tex]\(^3\)[/tex]
- Mass of SO[tex]\(_2\)[/tex], [tex]\( \text{mass}_{\text{SO}_2} = 192\)[/tex] g
3. Molar mass of SO[tex]\(_2\)[/tex]:
- [tex]\( M_{\text{SO}_2} = 64.066 \)[/tex] g/mol
### Step 2: Conversion of Volume
- Volume needs to be in Liters for the calculation:
- [tex]\( V = 6 \)[/tex] dm[tex]\(^3\)[/tex] = 6 L
### Step 3: Calculate the Number of Moles of SO[tex]\(_2\)[/tex]
- Use the molar mass of SO[tex]\(_2\)[/tex] to find the number of moles, [tex]\( n \)[/tex]:
[tex]\[ n = \frac{\text{mass}_{\text{SO}_2}}{M_{\text{SO}_2}} = \frac{192 \text{ g}}{64.066 \text{ g/mol}} \approx 2.9969 \text{ moles} \][/tex]
### Step 4: Use the Van der Waals Equation
The Van der Waals equation for a real gas is:
[tex]\[ \left(P + a \left( \frac{n}{V} \right)^2 \right) \left( V - n b \right) = n R T \][/tex]
Where [tex]\( R \)[/tex] is the universal gas constant, [tex]\( R = 0.0821 \)[/tex] L·atm/K·mol.
### Step 5: Solve for Temperature [tex]\( T \)[/tex]
Rearrange the Van der Waals equation to solve for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{\left(P + a \left( \frac{n}{V} \right)^2 \right) \left( V - n b \right)}{n R} \][/tex]
Plug in the known values:
[tex]\[ T = \frac{\left(15 + 6.865 \left( \frac{2.9969}{6} \right)^2 \right) \left(6 - 2.9969 \times 0.05679 \right)}{2.9969 \times 0.0821} \][/tex]
### Step 6: Calculation
Perform the calculations step-by-step:
1. Calculate [tex]\(\left( \frac{n}{V} \right)^2 \)[/tex]:
[tex]\[ \left( \frac{2.9969}{6} \right)^2 \approx 0.2497 \][/tex]
2. Calculate the pressure factor:
[tex]\[ 15 + 6.865 \times 0.2497 \approx 16.7137 \][/tex]
3. Calculate the volume factor:
[tex]\[ 6 - 2.9969 \times 0.05679 \approx 5.8298 \][/tex]
4. Combine these into the formula for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{16.7137 \times 5.8298}{2.9969 \times 0.0821} \approx \frac{97.4504}{0.2461} \approx 395.99 \][/tex]
### Step 7: Final Result
The temperature at which 192 g of SO[tex]\(_2\)[/tex] would occupy a volume of 6 dm[tex]\(^3\)[/tex] at 15 atm pressure is approximately 396 Kelvin.
### Step 1: Understand the Given Data
1. Van der Waals constants for SO[tex]\(_2\)[/tex]:
- [tex]\(a = 6.865\)[/tex] atm·L[tex]\(^2\)[/tex]/mol[tex]\(^2\)[/tex]
- [tex]\(b = 0.05679\)[/tex] L/mol
2. Given values:
- Pressure, [tex]\(P = 15\)[/tex] atm
- Volume, [tex]\(V = 6\)[/tex] dm[tex]\(^3\)[/tex]
- Mass of SO[tex]\(_2\)[/tex], [tex]\( \text{mass}_{\text{SO}_2} = 192\)[/tex] g
3. Molar mass of SO[tex]\(_2\)[/tex]:
- [tex]\( M_{\text{SO}_2} = 64.066 \)[/tex] g/mol
### Step 2: Conversion of Volume
- Volume needs to be in Liters for the calculation:
- [tex]\( V = 6 \)[/tex] dm[tex]\(^3\)[/tex] = 6 L
### Step 3: Calculate the Number of Moles of SO[tex]\(_2\)[/tex]
- Use the molar mass of SO[tex]\(_2\)[/tex] to find the number of moles, [tex]\( n \)[/tex]:
[tex]\[ n = \frac{\text{mass}_{\text{SO}_2}}{M_{\text{SO}_2}} = \frac{192 \text{ g}}{64.066 \text{ g/mol}} \approx 2.9969 \text{ moles} \][/tex]
### Step 4: Use the Van der Waals Equation
The Van der Waals equation for a real gas is:
[tex]\[ \left(P + a \left( \frac{n}{V} \right)^2 \right) \left( V - n b \right) = n R T \][/tex]
Where [tex]\( R \)[/tex] is the universal gas constant, [tex]\( R = 0.0821 \)[/tex] L·atm/K·mol.
### Step 5: Solve for Temperature [tex]\( T \)[/tex]
Rearrange the Van der Waals equation to solve for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{\left(P + a \left( \frac{n}{V} \right)^2 \right) \left( V - n b \right)}{n R} \][/tex]
Plug in the known values:
[tex]\[ T = \frac{\left(15 + 6.865 \left( \frac{2.9969}{6} \right)^2 \right) \left(6 - 2.9969 \times 0.05679 \right)}{2.9969 \times 0.0821} \][/tex]
### Step 6: Calculation
Perform the calculations step-by-step:
1. Calculate [tex]\(\left( \frac{n}{V} \right)^2 \)[/tex]:
[tex]\[ \left( \frac{2.9969}{6} \right)^2 \approx 0.2497 \][/tex]
2. Calculate the pressure factor:
[tex]\[ 15 + 6.865 \times 0.2497 \approx 16.7137 \][/tex]
3. Calculate the volume factor:
[tex]\[ 6 - 2.9969 \times 0.05679 \approx 5.8298 \][/tex]
4. Combine these into the formula for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{16.7137 \times 5.8298}{2.9969 \times 0.0821} \approx \frac{97.4504}{0.2461} \approx 395.99 \][/tex]
### Step 7: Final Result
The temperature at which 192 g of SO[tex]\(_2\)[/tex] would occupy a volume of 6 dm[tex]\(^3\)[/tex] at 15 atm pressure is approximately 396 Kelvin.
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.