IDNLearn.com makes it easy to get reliable answers from experts and enthusiasts alike. Find in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
Let's solve the given problems step-by-step for the matrix [tex]\( A \)[/tex] and its eigenvalues.
### Part (a): Finding the values of [tex]\(\lambda_1\)[/tex] and [tex]\(\lambda_2\)[/tex]
Given the matrix:
[tex]\[ A = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} \][/tex]
and [tex]\(I\)[/tex] as the [tex]\(2 \times 2\)[/tex] identity matrix:
[tex]\[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
The condition [tex]\(\operatorname{det}(A - \lambda I) = 0\)[/tex] gives us the characteristic polynomial of the matrix [tex]\(A\)[/tex].
First, compute [tex]\(A - \lambda I\)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} \][/tex]
Next, compute the determinant:
[tex]\[ \operatorname{det}(A - \lambda I) = \operatorname{det} \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} = (3 - \lambda)(2 - \lambda) - (4)(5) \][/tex]
Expanding the determinant:
[tex]\[ (3 - \lambda)(2 - \lambda) - 20 = 6 - 3\lambda - 2\lambda + \lambda^2 - 20 \][/tex]
[tex]\[ = \lambda^2 - 5\lambda - 14 \][/tex]
Thus, the characteristic equation is:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
To find the eigenvalues, solve this quadratic equation:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
Using the quadratic formula [tex]\(\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -14\)[/tex]:
[tex]\[ \lambda = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-14)}}{2(1)} = \frac{5 \pm \sqrt{25 + 56}}{2} = \frac{5 \pm \sqrt{81}}{2} \][/tex]
[tex]\[ = \frac{5 \pm 9}{2} \][/tex]
Therefore, the eigenvalues are:
[tex]\[ \lambda_1 = \frac{5 + 9}{2} = 7 \][/tex]
[tex]\[ \lambda_2 = \frac{5 - 9}{2} = -2 \][/tex]
Given [tex]\(\lambda_1 > \lambda_2\)[/tex], we have:
[tex]\[ \lambda_1 = 7 \][/tex]
[tex]\[ \lambda_2 = -2 \][/tex]
### Part (b): Finding the eigenvectors
To find the eigenvectors for [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex], we solve the system [tex]\((A - \lambda I)\mathbf{v} = 0\)[/tex] for each eigenvalue.
#### Eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex]:
[tex]\[ A - 7I = \begin{pmatrix} 3 - 7 & 4 \\ 5 & 2 - 7 \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ -4x + 4y = 0 \][/tex]
[tex]\[ 5x - 5y = 0 \][/tex]
Both equations reduce to:
[tex]\[ x = y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex] is:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
#### Eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex]:
[tex]\[ A - (-2)I = \begin{pmatrix} 3 + 2 & 4 \\ 5 & 2 + 2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ 5x + 4y = 0 \][/tex]
This reduces to:
[tex]\[ x = -\frac{4}{5}y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex] is:
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
In conclusion:
- The eigenvalues are: [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex].
- The corresponding eigenvectors are:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
### Part (a): Finding the values of [tex]\(\lambda_1\)[/tex] and [tex]\(\lambda_2\)[/tex]
Given the matrix:
[tex]\[ A = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} \][/tex]
and [tex]\(I\)[/tex] as the [tex]\(2 \times 2\)[/tex] identity matrix:
[tex]\[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
The condition [tex]\(\operatorname{det}(A - \lambda I) = 0\)[/tex] gives us the characteristic polynomial of the matrix [tex]\(A\)[/tex].
First, compute [tex]\(A - \lambda I\)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} \][/tex]
Next, compute the determinant:
[tex]\[ \operatorname{det}(A - \lambda I) = \operatorname{det} \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} = (3 - \lambda)(2 - \lambda) - (4)(5) \][/tex]
Expanding the determinant:
[tex]\[ (3 - \lambda)(2 - \lambda) - 20 = 6 - 3\lambda - 2\lambda + \lambda^2 - 20 \][/tex]
[tex]\[ = \lambda^2 - 5\lambda - 14 \][/tex]
Thus, the characteristic equation is:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
To find the eigenvalues, solve this quadratic equation:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
Using the quadratic formula [tex]\(\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -14\)[/tex]:
[tex]\[ \lambda = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-14)}}{2(1)} = \frac{5 \pm \sqrt{25 + 56}}{2} = \frac{5 \pm \sqrt{81}}{2} \][/tex]
[tex]\[ = \frac{5 \pm 9}{2} \][/tex]
Therefore, the eigenvalues are:
[tex]\[ \lambda_1 = \frac{5 + 9}{2} = 7 \][/tex]
[tex]\[ \lambda_2 = \frac{5 - 9}{2} = -2 \][/tex]
Given [tex]\(\lambda_1 > \lambda_2\)[/tex], we have:
[tex]\[ \lambda_1 = 7 \][/tex]
[tex]\[ \lambda_2 = -2 \][/tex]
### Part (b): Finding the eigenvectors
To find the eigenvectors for [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex], we solve the system [tex]\((A - \lambda I)\mathbf{v} = 0\)[/tex] for each eigenvalue.
#### Eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex]:
[tex]\[ A - 7I = \begin{pmatrix} 3 - 7 & 4 \\ 5 & 2 - 7 \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ -4x + 4y = 0 \][/tex]
[tex]\[ 5x - 5y = 0 \][/tex]
Both equations reduce to:
[tex]\[ x = y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex] is:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
#### Eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex]:
[tex]\[ A - (-2)I = \begin{pmatrix} 3 + 2 & 4 \\ 5 & 2 + 2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ 5x + 4y = 0 \][/tex]
This reduces to:
[tex]\[ x = -\frac{4}{5}y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex] is:
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
In conclusion:
- The eigenvalues are: [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex].
- The corresponding eigenvectors are:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.