Join IDNLearn.com today and start getting the answers you've been searching for. Discover trustworthy solutions to your questions quickly and accurately with help from our dedicated community of experts.
Sagot :
Let's solve the given problems step-by-step for the matrix [tex]\( A \)[/tex] and its eigenvalues.
### Part (a): Finding the values of [tex]\(\lambda_1\)[/tex] and [tex]\(\lambda_2\)[/tex]
Given the matrix:
[tex]\[ A = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} \][/tex]
and [tex]\(I\)[/tex] as the [tex]\(2 \times 2\)[/tex] identity matrix:
[tex]\[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
The condition [tex]\(\operatorname{det}(A - \lambda I) = 0\)[/tex] gives us the characteristic polynomial of the matrix [tex]\(A\)[/tex].
First, compute [tex]\(A - \lambda I\)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} \][/tex]
Next, compute the determinant:
[tex]\[ \operatorname{det}(A - \lambda I) = \operatorname{det} \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} = (3 - \lambda)(2 - \lambda) - (4)(5) \][/tex]
Expanding the determinant:
[tex]\[ (3 - \lambda)(2 - \lambda) - 20 = 6 - 3\lambda - 2\lambda + \lambda^2 - 20 \][/tex]
[tex]\[ = \lambda^2 - 5\lambda - 14 \][/tex]
Thus, the characteristic equation is:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
To find the eigenvalues, solve this quadratic equation:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
Using the quadratic formula [tex]\(\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -14\)[/tex]:
[tex]\[ \lambda = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-14)}}{2(1)} = \frac{5 \pm \sqrt{25 + 56}}{2} = \frac{5 \pm \sqrt{81}}{2} \][/tex]
[tex]\[ = \frac{5 \pm 9}{2} \][/tex]
Therefore, the eigenvalues are:
[tex]\[ \lambda_1 = \frac{5 + 9}{2} = 7 \][/tex]
[tex]\[ \lambda_2 = \frac{5 - 9}{2} = -2 \][/tex]
Given [tex]\(\lambda_1 > \lambda_2\)[/tex], we have:
[tex]\[ \lambda_1 = 7 \][/tex]
[tex]\[ \lambda_2 = -2 \][/tex]
### Part (b): Finding the eigenvectors
To find the eigenvectors for [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex], we solve the system [tex]\((A - \lambda I)\mathbf{v} = 0\)[/tex] for each eigenvalue.
#### Eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex]:
[tex]\[ A - 7I = \begin{pmatrix} 3 - 7 & 4 \\ 5 & 2 - 7 \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ -4x + 4y = 0 \][/tex]
[tex]\[ 5x - 5y = 0 \][/tex]
Both equations reduce to:
[tex]\[ x = y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex] is:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
#### Eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex]:
[tex]\[ A - (-2)I = \begin{pmatrix} 3 + 2 & 4 \\ 5 & 2 + 2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ 5x + 4y = 0 \][/tex]
This reduces to:
[tex]\[ x = -\frac{4}{5}y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex] is:
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
In conclusion:
- The eigenvalues are: [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex].
- The corresponding eigenvectors are:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
### Part (a): Finding the values of [tex]\(\lambda_1\)[/tex] and [tex]\(\lambda_2\)[/tex]
Given the matrix:
[tex]\[ A = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} \][/tex]
and [tex]\(I\)[/tex] as the [tex]\(2 \times 2\)[/tex] identity matrix:
[tex]\[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
The condition [tex]\(\operatorname{det}(A - \lambda I) = 0\)[/tex] gives us the characteristic polynomial of the matrix [tex]\(A\)[/tex].
First, compute [tex]\(A - \lambda I\)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} \][/tex]
Next, compute the determinant:
[tex]\[ \operatorname{det}(A - \lambda I) = \operatorname{det} \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} = (3 - \lambda)(2 - \lambda) - (4)(5) \][/tex]
Expanding the determinant:
[tex]\[ (3 - \lambda)(2 - \lambda) - 20 = 6 - 3\lambda - 2\lambda + \lambda^2 - 20 \][/tex]
[tex]\[ = \lambda^2 - 5\lambda - 14 \][/tex]
Thus, the characteristic equation is:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
To find the eigenvalues, solve this quadratic equation:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
Using the quadratic formula [tex]\(\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -14\)[/tex]:
[tex]\[ \lambda = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-14)}}{2(1)} = \frac{5 \pm \sqrt{25 + 56}}{2} = \frac{5 \pm \sqrt{81}}{2} \][/tex]
[tex]\[ = \frac{5 \pm 9}{2} \][/tex]
Therefore, the eigenvalues are:
[tex]\[ \lambda_1 = \frac{5 + 9}{2} = 7 \][/tex]
[tex]\[ \lambda_2 = \frac{5 - 9}{2} = -2 \][/tex]
Given [tex]\(\lambda_1 > \lambda_2\)[/tex], we have:
[tex]\[ \lambda_1 = 7 \][/tex]
[tex]\[ \lambda_2 = -2 \][/tex]
### Part (b): Finding the eigenvectors
To find the eigenvectors for [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex], we solve the system [tex]\((A - \lambda I)\mathbf{v} = 0\)[/tex] for each eigenvalue.
#### Eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex]:
[tex]\[ A - 7I = \begin{pmatrix} 3 - 7 & 4 \\ 5 & 2 - 7 \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ -4x + 4y = 0 \][/tex]
[tex]\[ 5x - 5y = 0 \][/tex]
Both equations reduce to:
[tex]\[ x = y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex] is:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
#### Eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex]:
[tex]\[ A - (-2)I = \begin{pmatrix} 3 + 2 & 4 \\ 5 & 2 + 2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ 5x + 4y = 0 \][/tex]
This reduces to:
[tex]\[ x = -\frac{4}{5}y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex] is:
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
In conclusion:
- The eigenvalues are: [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex].
- The corresponding eigenvectors are:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.