IDNLearn.com provides a user-friendly platform for finding and sharing accurate answers. Our platform offers reliable and comprehensive answers to help you make informed decisions quickly and easily.
Sagot :
Sure, let's find the derivative [tex]\(\frac{dy}{dx}\)[/tex] for the equation [tex]\(y = x^y\)[/tex] using implicit differentiation step-by-step.
### Step 1: Rewrite the Equation
Let's start by taking the natural logarithm of both sides of the equation to make differentiation easier:
[tex]\[ \ln(y) = \ln(x^y) \][/tex]
### Step 2: Apply Logarithm Properties
We can use the property of logarithms that states [tex]\(\ln(a^b) = b \ln(a)\)[/tex]:
[tex]\[ \ln(y) = y \ln(x) \][/tex]
### Step 3: Differentiate Both Sides with Respect to [tex]\(x\)[/tex]
We will use implicit differentiation here. Differentiate both sides with respect to [tex]\(x\)[/tex]:
#### Left Side:
[tex]\[ \frac{d}{dx} [\ln(y)] = \frac{1}{y} \frac{dy}{dx} \][/tex]
#### Right Side:
Use the product rule for differentiation:
[tex]\[ \frac{d}{dx} [y \ln(x)] = \ln(x) \frac{dy}{dx} + y \frac{d}{dx} [\ln(x)] \][/tex]
Since [tex]\(\frac{d}{dx} [\ln(x)] = \frac{1}{x}\)[/tex], the right side becomes:
[tex]\[ \ln(x) \frac{dy}{dx} + y \frac{1}{x} \][/tex]
### Step 4: Set Equations Equal
Combine the differentiated left and right sides:
[tex]\[ \frac{1}{y} \frac{dy}{dx} = \ln(x) \frac{dy}{dx} + \frac{y}{x} \][/tex]
### Step 5: Solve for [tex]\(\frac{dy}{dx}\)[/tex]
Isolate [tex]\(\frac{dy}{dx}\)[/tex] on one side of the equation:
[tex]\[ \frac{1}{y} \frac{dy}{dx} - \ln(x) \frac{dy}{dx} = \frac{y}{x} \][/tex]
Factor out [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \left( \frac{1}{y} - \ln(x) \right) \frac{dy}{dx} = \frac{y}{x} \][/tex]
Thus,
[tex]\[ \frac{dy}{dx} = \frac{\frac{y}{x}}{\frac{1}{y} - \ln(x)} \][/tex]
### Step 6: Simplify
Simplifying the equation gives us:
[tex]\[ \frac{dy}{dx} = \frac{y}{x \left( \frac{1}{y} - \ln(x) \right)} \][/tex]
Combining the terms in the denominator:
[tex]\[ \frac{dy}{dx} = \frac{y^2}{x (1 - y \ln(x))} \][/tex]
So, the derivative [tex]\(\frac{dy}{dx}\)[/tex] for the equation [tex]\( y = x^y \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{y^2}{x (1 - y \ln(x))} \][/tex]
### Step 1: Rewrite the Equation
Let's start by taking the natural logarithm of both sides of the equation to make differentiation easier:
[tex]\[ \ln(y) = \ln(x^y) \][/tex]
### Step 2: Apply Logarithm Properties
We can use the property of logarithms that states [tex]\(\ln(a^b) = b \ln(a)\)[/tex]:
[tex]\[ \ln(y) = y \ln(x) \][/tex]
### Step 3: Differentiate Both Sides with Respect to [tex]\(x\)[/tex]
We will use implicit differentiation here. Differentiate both sides with respect to [tex]\(x\)[/tex]:
#### Left Side:
[tex]\[ \frac{d}{dx} [\ln(y)] = \frac{1}{y} \frac{dy}{dx} \][/tex]
#### Right Side:
Use the product rule for differentiation:
[tex]\[ \frac{d}{dx} [y \ln(x)] = \ln(x) \frac{dy}{dx} + y \frac{d}{dx} [\ln(x)] \][/tex]
Since [tex]\(\frac{d}{dx} [\ln(x)] = \frac{1}{x}\)[/tex], the right side becomes:
[tex]\[ \ln(x) \frac{dy}{dx} + y \frac{1}{x} \][/tex]
### Step 4: Set Equations Equal
Combine the differentiated left and right sides:
[tex]\[ \frac{1}{y} \frac{dy}{dx} = \ln(x) \frac{dy}{dx} + \frac{y}{x} \][/tex]
### Step 5: Solve for [tex]\(\frac{dy}{dx}\)[/tex]
Isolate [tex]\(\frac{dy}{dx}\)[/tex] on one side of the equation:
[tex]\[ \frac{1}{y} \frac{dy}{dx} - \ln(x) \frac{dy}{dx} = \frac{y}{x} \][/tex]
Factor out [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \left( \frac{1}{y} - \ln(x) \right) \frac{dy}{dx} = \frac{y}{x} \][/tex]
Thus,
[tex]\[ \frac{dy}{dx} = \frac{\frac{y}{x}}{\frac{1}{y} - \ln(x)} \][/tex]
### Step 6: Simplify
Simplifying the equation gives us:
[tex]\[ \frac{dy}{dx} = \frac{y}{x \left( \frac{1}{y} - \ln(x) \right)} \][/tex]
Combining the terms in the denominator:
[tex]\[ \frac{dy}{dx} = \frac{y^2}{x (1 - y \ln(x))} \][/tex]
So, the derivative [tex]\(\frac{dy}{dx}\)[/tex] for the equation [tex]\( y = x^y \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{y^2}{x (1 - y \ln(x))} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.