IDNLearn.com provides a collaborative environment for finding and sharing knowledge. Our platform offers reliable and detailed answers, ensuring you have the information you need.
Sagot :
Certainly! Let's determine the volume of a 0.235-mol ideal gas sample at 1.10 atm and [tex]\(25^{\circ}C\)[/tex].
We will use the Ideal Gas Law for this calculation, which is given by:
[tex]\[ PV = nRT \][/tex]
where
- [tex]\(P\)[/tex] is the pressure,
- [tex]\(V\)[/tex] is the volume,
- [tex]\(n\)[/tex] is the number of moles,
- [tex]\(R\)[/tex] is the ideal gas constant,
- [tex]\(T\)[/tex] is the temperature in Kelvin.
Here are the values provided in the problem:
- [tex]\(n = 0.235 \ \text{mol}\)[/tex]
- [tex]\(P = 1.10 \ \text{atm}\)[/tex]
- [tex]\(T = 25^{\circ}C\)[/tex]
First, we need to convert the temperature from Celsius to Kelvin. The conversion formula is:
[tex]\[ T(K) = T(^{\circ}C) + 273.15 \][/tex]
So, for [tex]\(25^{\circ}C\)[/tex]:
[tex]\[ T = 25 + 273.15 = 298.15 \ \text{K} \][/tex]
The ideal gas constant [tex]\(R\)[/tex] is:
[tex]\[ R = 0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol}) \][/tex]
Now, we can rearrange the Ideal Gas Law to solve for [tex]\(V\)[/tex] (volume):
[tex]\[ V = \frac{nRT}{P} \][/tex]
Substituting in the given values:
[tex]\[ V = \frac{(0.235 \ \text{mol}) \times (0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})) \times (298.15 \ \text{K})}{1.10 \ \text{atm}} \][/tex]
Calculating the numerator:
[tex]\[ (0.235 \ \text{mol}) \times (0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})) \times (298.15 \ \text{K}) \approx 5.752787925 \ \text{L} \cdot \text{atm} \][/tex]
Now, divide by the pressure:
[tex]\[ V = \frac{5.752787925 \ \text{L} \cdot \text{atm}}{1.10 \ \text{atm}} \approx 5.2294154772727275 \ \text{L} \][/tex]
Therefore, the volume of the gas sample is approximately [tex]\(5.229 \ \text{L} \)[/tex].
We will use the Ideal Gas Law for this calculation, which is given by:
[tex]\[ PV = nRT \][/tex]
where
- [tex]\(P\)[/tex] is the pressure,
- [tex]\(V\)[/tex] is the volume,
- [tex]\(n\)[/tex] is the number of moles,
- [tex]\(R\)[/tex] is the ideal gas constant,
- [tex]\(T\)[/tex] is the temperature in Kelvin.
Here are the values provided in the problem:
- [tex]\(n = 0.235 \ \text{mol}\)[/tex]
- [tex]\(P = 1.10 \ \text{atm}\)[/tex]
- [tex]\(T = 25^{\circ}C\)[/tex]
First, we need to convert the temperature from Celsius to Kelvin. The conversion formula is:
[tex]\[ T(K) = T(^{\circ}C) + 273.15 \][/tex]
So, for [tex]\(25^{\circ}C\)[/tex]:
[tex]\[ T = 25 + 273.15 = 298.15 \ \text{K} \][/tex]
The ideal gas constant [tex]\(R\)[/tex] is:
[tex]\[ R = 0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol}) \][/tex]
Now, we can rearrange the Ideal Gas Law to solve for [tex]\(V\)[/tex] (volume):
[tex]\[ V = \frac{nRT}{P} \][/tex]
Substituting in the given values:
[tex]\[ V = \frac{(0.235 \ \text{mol}) \times (0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})) \times (298.15 \ \text{K})}{1.10 \ \text{atm}} \][/tex]
Calculating the numerator:
[tex]\[ (0.235 \ \text{mol}) \times (0.0821 \ \text{L} \cdot \text{atm} / (\text{K} \cdot \text{mol})) \times (298.15 \ \text{K}) \approx 5.752787925 \ \text{L} \cdot \text{atm} \][/tex]
Now, divide by the pressure:
[tex]\[ V = \frac{5.752787925 \ \text{L} \cdot \text{atm}}{1.10 \ \text{atm}} \approx 5.2294154772727275 \ \text{L} \][/tex]
Therefore, the volume of the gas sample is approximately [tex]\(5.229 \ \text{L} \)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions deserve reliable answers. Thanks for visiting IDNLearn.com, and see you again soon for more helpful information.