Get detailed and accurate responses to your questions on IDNLearn.com. Join our community to receive timely and reliable responses to your questions from knowledgeable professionals.
Sagot :
To determine the distance [tex]\( r \)[/tex] between two point charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] such that the electrostatic force between them equals 8.28 N, we use Coulomb's law. Coulomb's law states that the magnitude of the electrostatic force [tex]\( F \)[/tex] between two point charges is given by:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where,
- [tex]\( F \)[/tex] is the force between the charges (8.28 N),
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
1. Convert the charges to Coulombs:
[tex]\[ q_1 = 20.8 \, \mu\text{C} = 20.8 \times 10^{-6} \, \text{C} \][/tex]
[tex]\[ q_2 = -69.3 \, \mu\text{C} = -69.3 \times 10^{-6} \, \text{C} \][/tex]
2. Determine the absolute value of the product of the charges:
[tex]\[ |q_1 \cdot q_2| = |(20.8 \times 10^{-6}) \cdot (-69.3 \times 10^{-6})| \][/tex]
[tex]\[ |q_1 \cdot q_2| = 1.44144 \times 10^{-9} \, \text{C}^2 \][/tex]
3. Calculate the numerator [tex]\( k \cdot |q_1 \cdot q_2| \)[/tex]:
[tex]\[ k \cdot |q_1 \cdot q_2| = (8.99 \times 10^9) \cdot (1.44144 \times 10^{-9}) \][/tex]
[tex]\[ k \cdot |q_1 \cdot q_2| = 12.9585456 \, \text{N·m}^2 \][/tex]
4. Solve for the distance [tex]\( r \)[/tex] using the rearranged formula:
[tex]\[ r = \sqrt{\frac{k \cdot |q_1 \cdot q_2|}{F}} \][/tex]
[tex]\[ r = \sqrt{\frac{12.9585456}{8.28}} \][/tex]
[tex]\[ r = \sqrt{1.565592} \][/tex]
[tex]\[ r = 1.251 \, \text{m} \][/tex]
Therefore, the distance between the charges must be [tex]\( \boxed{1.251} \)[/tex] meters for the electrostatic force between them to have a magnitude of 8.28 N.
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where,
- [tex]\( F \)[/tex] is the force between the charges (8.28 N),
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
1. Convert the charges to Coulombs:
[tex]\[ q_1 = 20.8 \, \mu\text{C} = 20.8 \times 10^{-6} \, \text{C} \][/tex]
[tex]\[ q_2 = -69.3 \, \mu\text{C} = -69.3 \times 10^{-6} \, \text{C} \][/tex]
2. Determine the absolute value of the product of the charges:
[tex]\[ |q_1 \cdot q_2| = |(20.8 \times 10^{-6}) \cdot (-69.3 \times 10^{-6})| \][/tex]
[tex]\[ |q_1 \cdot q_2| = 1.44144 \times 10^{-9} \, \text{C}^2 \][/tex]
3. Calculate the numerator [tex]\( k \cdot |q_1 \cdot q_2| \)[/tex]:
[tex]\[ k \cdot |q_1 \cdot q_2| = (8.99 \times 10^9) \cdot (1.44144 \times 10^{-9}) \][/tex]
[tex]\[ k \cdot |q_1 \cdot q_2| = 12.9585456 \, \text{N·m}^2 \][/tex]
4. Solve for the distance [tex]\( r \)[/tex] using the rearranged formula:
[tex]\[ r = \sqrt{\frac{k \cdot |q_1 \cdot q_2|}{F}} \][/tex]
[tex]\[ r = \sqrt{\frac{12.9585456}{8.28}} \][/tex]
[tex]\[ r = \sqrt{1.565592} \][/tex]
[tex]\[ r = 1.251 \, \text{m} \][/tex]
Therefore, the distance between the charges must be [tex]\( \boxed{1.251} \)[/tex] meters for the electrostatic force between them to have a magnitude of 8.28 N.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions are important to us at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.