IDNLearn.com is your go-to resource for finding answers to any question you have. Receive prompt and accurate responses to your questions from our community of knowledgeable professionals ready to assist you at any time.
Sagot :
Certainly! Let's solve each of these questions step-by-step.
### 6. Factorize: [tex]\(2(x-y)^2-9(x-y)+10\)[/tex]
To factorize the given quadratic expression, we will employ substitution to simplify it.
1. Substitution:
Let [tex]\(u = (x - y)\)[/tex]. Then the expression [tex]\(2(x-y)^2 - 9(x-y) + 10\)[/tex] transforms to:
[tex]\[ 2u^2 - 9u + 10 \][/tex]
2. Quadratic Factorization:
To factorize [tex]\(2u^2 - 9u + 10\)[/tex], we find the roots using the quadratic formula:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
- Here, [tex]\(a = 2\)[/tex], [tex]\(b = -9\)[/tex], and [tex]\(c = 10\)[/tex].
3. Calculate the Discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = (-9)^2 - 4 \cdot 2 \cdot 10 \][/tex]
[tex]\[ = 81 - 80 = 1 \][/tex]
4. Find the Roots:
[tex]\[ u_1 = \frac{-(-9) + \sqrt{1}}{2 \cdot 2} = \frac{9 + 1}{4} = \frac{10}{4} = 2.5 \][/tex]
[tex]\[ u_2 = \frac{-(-9) - \sqrt{1}}{2 \cdot 2} = \frac{9 - 1}{4} = \frac{8}{4} = 2 \][/tex]
5. Factor Form:
So, the quadratic [tex]\(2u^2 - 9u + 10\)[/tex] can be factored into:
[tex]\[ 2(u - 2.5)(u - 2) \][/tex]
6. Substitute Back [tex]\(u = (x - y)\)[/tex]:
[tex]\[ 2((x - y) - 2.5)((x - y) - 2) \][/tex]
Therefore, the factorized form of the expression [tex]\(2(x-y)^2 - 9(x-y) + 10\)[/tex] is:
[tex]\[ 2((x-y) - 2.5)((x-y) - 2) \][/tex]
### 7. Set Operations
#### i) List the elements of the sets [tex]\(X\)[/tex], [tex]\(Y\)[/tex], and [tex]\(Z\)[/tex].
- Set [tex]\( X \)[/tex]: Multiples of 2 up to 20.
[tex]\[ X = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\} \][/tex]
- Set [tex]\( Y \)[/tex]: Even numbers up to 10.
[tex]\[ Y = \{2, 4, 6, 8, 10\} \][/tex]
- Set [tex]\( Z \)[/tex]: Factors of 16 greater than 1.
[tex]\[ Z = \{2, 4, 8, 16\} \][/tex]
#### ii) Are the subsets proper and improper? Give Reason.
- Is [tex]\(Y\)[/tex] a subset of [tex]\(X\)[/tex]?
[tex]\[ Y \subseteq X \][/tex]
All elements of [tex]\(Y\)[/tex] are in [tex]\(X\)[/tex]. Therefore, [tex]\(Y\)[/tex] is a subset of [tex]\(X\)[/tex]. Since [tex]\(Y\)[/tex] does not contain all elements of [tex]\(X\)[/tex] and [tex]\(X \neq Y\)[/tex], it is a proper subset.
- Is [tex]\(Z\)[/tex] a subset of [tex]\(X\)[/tex]?
[tex]\[ Z \subseteq X \][/tex]
All elements of [tex]\(Z\)[/tex] are in [tex]\(X\)[/tex]. Therefore, [tex]\(Z\)[/tex] is a subset of [tex]\(X\)[/tex]. Since [tex]\(Z\)[/tex] does not contain all elements of [tex]\(X\)[/tex] and [tex]\(X \neq Z\)[/tex], it is a proper subset.
#### iii) Combine the elements of [tex]\(Y\)[/tex] and [tex]\(Z\)[/tex] and show it in the Venn Diagram along with the universal set.
- Union of [tex]\(Y\)[/tex] and [tex]\(Z\)[/tex]:
[tex]\[ Y \cup Z = \{2, 4, 6, 8, 10, 16\} \][/tex]
- Universal Set:
Let's consider the universal set up to 20:
[tex]\[ \text{Universal Set} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\} \][/tex]
### Venn Diagram
1. Universal Set: [tex]\(\{1, 2, 3, \dots, 20\}\)[/tex]
2. Set [tex]\(X\)[/tex]: [tex]\(\{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}\)[/tex]
3. Set [tex]\(Y\)[/tex]: [tex]\(\{2, 4, 6, 8, 10\}\)[/tex]
4. Set [tex]\(Z\)[/tex]: [tex]\(\{2, 4, 8, 16\}\)[/tex]
5. Union [tex]\(Y \cup Z\)[/tex]: [tex]\(\{2, 4, 6, 8, 10, 16\}\)[/tex]
In a Venn diagram, we can represent the relationship between [tex]\(X\)[/tex], [tex]\(Y\)[/tex], [tex]\(Z\)[/tex], and their union within the universal set:
- [tex]\(X\)[/tex] will encompass all the multiples of 2 up to 20.
- [tex]\(Y\)[/tex] will be within [tex]\(X\)[/tex] containing the smaller set.
- [tex]\(Z\)[/tex] will overlap with [tex]\(Y\)[/tex] since they share common elements.
- Union [tex]\(Y \cup Z\)[/tex] combines both.
Unfortunately, a text-based Venn diagram isn't possible here, but the relationships can be understood from the element descriptions.
### 6. Factorize: [tex]\(2(x-y)^2-9(x-y)+10\)[/tex]
To factorize the given quadratic expression, we will employ substitution to simplify it.
1. Substitution:
Let [tex]\(u = (x - y)\)[/tex]. Then the expression [tex]\(2(x-y)^2 - 9(x-y) + 10\)[/tex] transforms to:
[tex]\[ 2u^2 - 9u + 10 \][/tex]
2. Quadratic Factorization:
To factorize [tex]\(2u^2 - 9u + 10\)[/tex], we find the roots using the quadratic formula:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
- Here, [tex]\(a = 2\)[/tex], [tex]\(b = -9\)[/tex], and [tex]\(c = 10\)[/tex].
3. Calculate the Discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = (-9)^2 - 4 \cdot 2 \cdot 10 \][/tex]
[tex]\[ = 81 - 80 = 1 \][/tex]
4. Find the Roots:
[tex]\[ u_1 = \frac{-(-9) + \sqrt{1}}{2 \cdot 2} = \frac{9 + 1}{4} = \frac{10}{4} = 2.5 \][/tex]
[tex]\[ u_2 = \frac{-(-9) - \sqrt{1}}{2 \cdot 2} = \frac{9 - 1}{4} = \frac{8}{4} = 2 \][/tex]
5. Factor Form:
So, the quadratic [tex]\(2u^2 - 9u + 10\)[/tex] can be factored into:
[tex]\[ 2(u - 2.5)(u - 2) \][/tex]
6. Substitute Back [tex]\(u = (x - y)\)[/tex]:
[tex]\[ 2((x - y) - 2.5)((x - y) - 2) \][/tex]
Therefore, the factorized form of the expression [tex]\(2(x-y)^2 - 9(x-y) + 10\)[/tex] is:
[tex]\[ 2((x-y) - 2.5)((x-y) - 2) \][/tex]
### 7. Set Operations
#### i) List the elements of the sets [tex]\(X\)[/tex], [tex]\(Y\)[/tex], and [tex]\(Z\)[/tex].
- Set [tex]\( X \)[/tex]: Multiples of 2 up to 20.
[tex]\[ X = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\} \][/tex]
- Set [tex]\( Y \)[/tex]: Even numbers up to 10.
[tex]\[ Y = \{2, 4, 6, 8, 10\} \][/tex]
- Set [tex]\( Z \)[/tex]: Factors of 16 greater than 1.
[tex]\[ Z = \{2, 4, 8, 16\} \][/tex]
#### ii) Are the subsets proper and improper? Give Reason.
- Is [tex]\(Y\)[/tex] a subset of [tex]\(X\)[/tex]?
[tex]\[ Y \subseteq X \][/tex]
All elements of [tex]\(Y\)[/tex] are in [tex]\(X\)[/tex]. Therefore, [tex]\(Y\)[/tex] is a subset of [tex]\(X\)[/tex]. Since [tex]\(Y\)[/tex] does not contain all elements of [tex]\(X\)[/tex] and [tex]\(X \neq Y\)[/tex], it is a proper subset.
- Is [tex]\(Z\)[/tex] a subset of [tex]\(X\)[/tex]?
[tex]\[ Z \subseteq X \][/tex]
All elements of [tex]\(Z\)[/tex] are in [tex]\(X\)[/tex]. Therefore, [tex]\(Z\)[/tex] is a subset of [tex]\(X\)[/tex]. Since [tex]\(Z\)[/tex] does not contain all elements of [tex]\(X\)[/tex] and [tex]\(X \neq Z\)[/tex], it is a proper subset.
#### iii) Combine the elements of [tex]\(Y\)[/tex] and [tex]\(Z\)[/tex] and show it in the Venn Diagram along with the universal set.
- Union of [tex]\(Y\)[/tex] and [tex]\(Z\)[/tex]:
[tex]\[ Y \cup Z = \{2, 4, 6, 8, 10, 16\} \][/tex]
- Universal Set:
Let's consider the universal set up to 20:
[tex]\[ \text{Universal Set} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\} \][/tex]
### Venn Diagram
1. Universal Set: [tex]\(\{1, 2, 3, \dots, 20\}\)[/tex]
2. Set [tex]\(X\)[/tex]: [tex]\(\{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}\)[/tex]
3. Set [tex]\(Y\)[/tex]: [tex]\(\{2, 4, 6, 8, 10\}\)[/tex]
4. Set [tex]\(Z\)[/tex]: [tex]\(\{2, 4, 8, 16\}\)[/tex]
5. Union [tex]\(Y \cup Z\)[/tex]: [tex]\(\{2, 4, 6, 8, 10, 16\}\)[/tex]
In a Venn diagram, we can represent the relationship between [tex]\(X\)[/tex], [tex]\(Y\)[/tex], [tex]\(Z\)[/tex], and their union within the universal set:
- [tex]\(X\)[/tex] will encompass all the multiples of 2 up to 20.
- [tex]\(Y\)[/tex] will be within [tex]\(X\)[/tex] containing the smaller set.
- [tex]\(Z\)[/tex] will overlap with [tex]\(Y\)[/tex] since they share common elements.
- Union [tex]\(Y \cup Z\)[/tex] combines both.
Unfortunately, a text-based Venn diagram isn't possible here, but the relationships can be understood from the element descriptions.
Your presence in our community is highly appreciated. Keep sharing your insights and solutions. Together, we can build a rich and valuable knowledge resource for everyone. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.