Join IDNLearn.com and become part of a knowledge-sharing community that thrives on curiosity. Get step-by-step guidance for all your technical questions from our dedicated community members.
Sagot :
Let's find the left and right Riemann sums for the function [tex]\( f(x) = \frac{3}{x} + 2 \)[/tex] on the interval [tex]\([1, 5]\)[/tex] with [tex]\( n = 4 \)[/tex].
### Step-by-Step Solution:
1. Determine [tex]\(\Delta x\)[/tex]:
[tex]\[ \Delta x = \frac{b - a}{n} = \frac{5 - 1}{4} = 1 \][/tex]
2. Left Riemann Sum:
The left Riemann sum uses the left endpoints of each subinterval. The points we will evaluate [tex]\( f(x) \)[/tex] at are [tex]\( x_0, x_1, x_2, \)[/tex] and [tex]\( x_3 \)[/tex], where:
[tex]\[ x_0 = a = 1, \quad x_1 = 2, \quad x_2 = 3, \quad x_3 = 4 \][/tex]
The left Riemann sum is given by:
[tex]\[ L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x \][/tex]
Substitute [tex]\( f(x) \)[/tex] and the values of [tex]\( x \)[/tex]:
[tex]\[ L_4 = \left(f(1) + f(2) + f(3) + f(4)\right) \Delta x \][/tex]
Calculate each [tex]\( f(x) \)[/tex]:
[tex]\[ f(1) = \frac{3}{1} + 2 = 5 \][/tex]
[tex]\[ f(2) = \frac{3}{2} + 2 = \frac{7}{2} \][/tex]
[tex]\[ f(3) = \frac{3}{3} + 2 = 3 \][/tex]
[tex]\[ f(4) = \frac{3}{4} + 2 = \frac{11}{4} \][/tex]
Now, sum these values and multiply by [tex]\(\Delta x\)[/tex]:
[tex]\[ L_4 = \left( 5 + \frac{7}{2} + 3 + \frac{11}{4} \right) \cdot 1 \][/tex]
Simplify the sum:
[tex]\[ L_4 = 5 + \frac{7}{2} + 3 + \frac{11}{4} = \frac{20}{4} + \frac{14}{4} + \frac{12}{4} + \frac{11}{4} = \frac{57}{4} \][/tex]
Therefore, the left Riemann sum is:
[tex]\[ \boxed{\frac{57}{4}} \][/tex]
3. Right Riemann Sum:
The right Riemann sum uses the right endpoints of each subinterval. The points we will evaluate [tex]\( f(x) \)[/tex] at are [tex]\( x_1, x_2, x_3, \)[/tex] and [tex]\( x_4 \)[/tex], where:
[tex]\[ x_1 = 2, \quad x_2 = 3, \quad x_3 = 4, \quad x_4 = b = 5 \][/tex]
The right Riemann sum is given by:
[tex]\[ R_n = \sum_{i=1}^{n} f(x_i) \Delta x \][/tex]
Substitute [tex]\( f(x) \)[/tex] and the values of [tex]\( x \)[/tex]:
[tex]\[ R_4 = \left(f(2) + f(3) + f(4) + f(5)\right) \Delta x \][/tex]
Calculate [tex]\( f(5) \)[/tex]:
[tex]\[ f(5) = \frac{3}{5} + 2 = \frac{13}{5} \][/tex]
Now, sum these values and multiply by [tex]\(\Delta x\)[/tex]:
[tex]\[ R_4 = \left( \frac{7}{2} + 3 + \frac{11}{4} + \frac{13}{5} \right) \cdot 1 \][/tex]
Simplify the sum (by normalizing to a common denominator, if needed) and add the values:
(We'll use the Python-computed value directly to avoid manual errors)
[tex]\[ R_4 = 11.85 \][/tex]
Therefore, the right Riemann sum is:
[tex]\[ \boxed{11.85} \][/tex]
### Step-by-Step Solution:
1. Determine [tex]\(\Delta x\)[/tex]:
[tex]\[ \Delta x = \frac{b - a}{n} = \frac{5 - 1}{4} = 1 \][/tex]
2. Left Riemann Sum:
The left Riemann sum uses the left endpoints of each subinterval. The points we will evaluate [tex]\( f(x) \)[/tex] at are [tex]\( x_0, x_1, x_2, \)[/tex] and [tex]\( x_3 \)[/tex], where:
[tex]\[ x_0 = a = 1, \quad x_1 = 2, \quad x_2 = 3, \quad x_3 = 4 \][/tex]
The left Riemann sum is given by:
[tex]\[ L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x \][/tex]
Substitute [tex]\( f(x) \)[/tex] and the values of [tex]\( x \)[/tex]:
[tex]\[ L_4 = \left(f(1) + f(2) + f(3) + f(4)\right) \Delta x \][/tex]
Calculate each [tex]\( f(x) \)[/tex]:
[tex]\[ f(1) = \frac{3}{1} + 2 = 5 \][/tex]
[tex]\[ f(2) = \frac{3}{2} + 2 = \frac{7}{2} \][/tex]
[tex]\[ f(3) = \frac{3}{3} + 2 = 3 \][/tex]
[tex]\[ f(4) = \frac{3}{4} + 2 = \frac{11}{4} \][/tex]
Now, sum these values and multiply by [tex]\(\Delta x\)[/tex]:
[tex]\[ L_4 = \left( 5 + \frac{7}{2} + 3 + \frac{11}{4} \right) \cdot 1 \][/tex]
Simplify the sum:
[tex]\[ L_4 = 5 + \frac{7}{2} + 3 + \frac{11}{4} = \frac{20}{4} + \frac{14}{4} + \frac{12}{4} + \frac{11}{4} = \frac{57}{4} \][/tex]
Therefore, the left Riemann sum is:
[tex]\[ \boxed{\frac{57}{4}} \][/tex]
3. Right Riemann Sum:
The right Riemann sum uses the right endpoints of each subinterval. The points we will evaluate [tex]\( f(x) \)[/tex] at are [tex]\( x_1, x_2, x_3, \)[/tex] and [tex]\( x_4 \)[/tex], where:
[tex]\[ x_1 = 2, \quad x_2 = 3, \quad x_3 = 4, \quad x_4 = b = 5 \][/tex]
The right Riemann sum is given by:
[tex]\[ R_n = \sum_{i=1}^{n} f(x_i) \Delta x \][/tex]
Substitute [tex]\( f(x) \)[/tex] and the values of [tex]\( x \)[/tex]:
[tex]\[ R_4 = \left(f(2) + f(3) + f(4) + f(5)\right) \Delta x \][/tex]
Calculate [tex]\( f(5) \)[/tex]:
[tex]\[ f(5) = \frac{3}{5} + 2 = \frac{13}{5} \][/tex]
Now, sum these values and multiply by [tex]\(\Delta x\)[/tex]:
[tex]\[ R_4 = \left( \frac{7}{2} + 3 + \frac{11}{4} + \frac{13}{5} \right) \cdot 1 \][/tex]
Simplify the sum (by normalizing to a common denominator, if needed) and add the values:
(We'll use the Python-computed value directly to avoid manual errors)
[tex]\[ R_4 = 11.85 \][/tex]
Therefore, the right Riemann sum is:
[tex]\[ \boxed{11.85} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.