From beginner to expert, IDNLearn.com has answers for everyone. Ask any question and receive accurate, in-depth responses from our dedicated team of experts.
Sagot :
To test the hypothesis [tex]\( H_0: (p_1 - p_2) = 0 \)[/tex] against the alternative hypothesis [tex]\( H_a: (p_1 - p_2) > 0 \)[/tex] at a significance level of [tex]\( \alpha = 0.02 \)[/tex], let's break down the solution step by step:
### Step-by-Step Solution
1. Sample Sizes & Successes:
- Sample size for population 1, [tex]\( n_1 = 70 \)[/tex]
- Sample size for population 2, [tex]\( n_2 = 70 \)[/tex]
- Number of successes in sample 1, [tex]\( x_1 = 53 \)[/tex]
- Number of successes in sample 2, [tex]\( x_2 = 43 \)[/tex]
2. Sample Proportions:
- Proportion of successes in sample 1, [tex]\( \hat{p}_1 = \frac{x_1}{n_1} = \frac{53}{70} \approx 0.7571 \)[/tex]
- Proportion of successes in sample 2, [tex]\( \hat{p}_2 = \frac{x_2}{n_2} \approx \frac{43}{70} \approx 0.6143 \)[/tex]
3. Pooled Proportion:
- The pooled sample proportion is calculated as:
[tex]\[ \hat{p}_{\text{pool}} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{53 + 43}{70 + 70} = \frac{96}{140} \approx 0.6857 \][/tex]
4. Standard Error:
- The standard error of the difference in proportions is calculated using the pooled proportion:
[tex]\[ SE = \sqrt{\hat{p}_{\text{pool}} \cdot (1 - \hat{p}_{\text{pool}}) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \][/tex]
[tex]\[ SE \approx \sqrt{0.6857 \cdot (1 - 0.6857) \left(\frac{1}{70} + \frac{1}{70}\right)} \approx 0.0785 \][/tex]
5. Test Statistic:
- The test statistic (Z) for the difference in proportions is:
[tex]\[ Z = \frac{\hat{p}_1 - \hat{p}_2}{SE} = \frac{0.7571 - 0.6143}{0.0785} \approx 1.8205 \][/tex]
6. P-Value:
- Since the alternative hypothesis is testing if [tex]\( p_1 \)[/tex] is greater than [tex]\( p_2 \)[/tex], the P-value is determined from the Z-table (standard normal distribution) as:
[tex]\[ P\text{-value} = 1 - \Phi(Z) \approx 1 - \Phi(1.8205) \approx 0.0343 \][/tex]
### Conclusion
(a) The test statistic is [tex]\( \boxed{1.8205} \)[/tex].
(b) The P-value is [tex]\( \boxed{0.0343} \)[/tex].
With an alpha level [tex]\( \alpha = 0.02 \)[/tex], the P-value [tex]\( 0.0343 \)[/tex] is greater than [tex]\( 0.02 \)[/tex], so we fail to reject the null hypothesis [tex]\( H_0 \)[/tex]. This means there is not enough evidence to conclude that the proportion of successes in population 1 is greater than the proportion of successes in population 2 at the 0.02 significance level.
### Step-by-Step Solution
1. Sample Sizes & Successes:
- Sample size for population 1, [tex]\( n_1 = 70 \)[/tex]
- Sample size for population 2, [tex]\( n_2 = 70 \)[/tex]
- Number of successes in sample 1, [tex]\( x_1 = 53 \)[/tex]
- Number of successes in sample 2, [tex]\( x_2 = 43 \)[/tex]
2. Sample Proportions:
- Proportion of successes in sample 1, [tex]\( \hat{p}_1 = \frac{x_1}{n_1} = \frac{53}{70} \approx 0.7571 \)[/tex]
- Proportion of successes in sample 2, [tex]\( \hat{p}_2 = \frac{x_2}{n_2} \approx \frac{43}{70} \approx 0.6143 \)[/tex]
3. Pooled Proportion:
- The pooled sample proportion is calculated as:
[tex]\[ \hat{p}_{\text{pool}} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{53 + 43}{70 + 70} = \frac{96}{140} \approx 0.6857 \][/tex]
4. Standard Error:
- The standard error of the difference in proportions is calculated using the pooled proportion:
[tex]\[ SE = \sqrt{\hat{p}_{\text{pool}} \cdot (1 - \hat{p}_{\text{pool}}) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \][/tex]
[tex]\[ SE \approx \sqrt{0.6857 \cdot (1 - 0.6857) \left(\frac{1}{70} + \frac{1}{70}\right)} \approx 0.0785 \][/tex]
5. Test Statistic:
- The test statistic (Z) for the difference in proportions is:
[tex]\[ Z = \frac{\hat{p}_1 - \hat{p}_2}{SE} = \frac{0.7571 - 0.6143}{0.0785} \approx 1.8205 \][/tex]
6. P-Value:
- Since the alternative hypothesis is testing if [tex]\( p_1 \)[/tex] is greater than [tex]\( p_2 \)[/tex], the P-value is determined from the Z-table (standard normal distribution) as:
[tex]\[ P\text{-value} = 1 - \Phi(Z) \approx 1 - \Phi(1.8205) \approx 0.0343 \][/tex]
### Conclusion
(a) The test statistic is [tex]\( \boxed{1.8205} \)[/tex].
(b) The P-value is [tex]\( \boxed{0.0343} \)[/tex].
With an alpha level [tex]\( \alpha = 0.02 \)[/tex], the P-value [tex]\( 0.0343 \)[/tex] is greater than [tex]\( 0.02 \)[/tex], so we fail to reject the null hypothesis [tex]\( H_0 \)[/tex]. This means there is not enough evidence to conclude that the proportion of successes in population 1 is greater than the proportion of successes in population 2 at the 0.02 significance level.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.