Discover a world of knowledge and community-driven answers at IDNLearn.com today. Ask anything and receive thorough, reliable answers from our community of experienced professionals.
Sagot :
Let's analyze the function [tex]\( P(x) = x^3 + x^2 - 42x \)[/tex].
1. Finding the [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex].
Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ P(0) = 0^3 + 0^2 - 42 \cdot 0 = 0 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( 0 \)[/tex].
2. Finding the [tex]\( x \)[/tex]-intercepts:
The [tex]\( x \)[/tex]-intercepts are the values of [tex]\( x \)[/tex] where the function [tex]\( P(x) = 0 \)[/tex].
We solve the equation:
[tex]\[ x^3 + x^2 - 42x = 0 \][/tex]
Factor out the common term [tex]\( x \)[/tex]:
[tex]\[ x(x^2 + x - 42) = 0 \][/tex]
This gives us one [tex]\( x \)[/tex]-intercept at [tex]\( x = 0 \)[/tex].
Now, we solve the quadratic equation [tex]\( x^2 + x - 42 \)[/tex]:
[tex]\[ x^2 + x - 42 = 0 \][/tex]
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] with [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -42 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-42)}}{2(1)} = \frac{-1 \pm \sqrt{1 + 168}}{2} = \frac{-1 \pm \sqrt{169}}{2} = \frac{-1 \pm 13}{2} \][/tex]
Therefore, we get:
[tex]\[ x = \frac{-1 + 13}{2} = 6 \quad \text{and} \quad x = \frac{-1 - 13}{2} = -7 \][/tex]
So, the [tex]\( x \)[/tex]-intercepts are [tex]\( -7 \)[/tex], [tex]\( 0 \)[/tex], and [tex]\( 6 \)[/tex].
3. Analyzing the end behavior as [tex]\( x \rightarrow \infty \)[/tex]:
As [tex]\( x \)[/tex] approaches infinity, the term [tex]\( x^3 \)[/tex] will dominate because it has the highest power.
Therefore:
[tex]\[ \lim_ {x \to \infty} (x^3 + x^2 - 42x) = \infty \][/tex]
4. Analyzing the end behavior as [tex]\( x \rightarrow -\infty \)[/tex]:
Similarly, as [tex]\( x \)[/tex] approaches negative infinity, the term [tex]\( x^3 \)[/tex] will still dominate.
Therefore:
[tex]\[ \lim_ {x \to -\infty} (x^3 + x^2 - 42x) = -\infty \][/tex]
Summarizing all the findings:
- The [tex]\( y \)[/tex]-intercept is [tex]\( \boxed{0} \)[/tex].
- The [tex]\( x \)[/tex]-intercepts are [tex]\( \boxed{-7, 0, 6} \)[/tex].
- When [tex]\( x \rightarrow \infty \)[/tex], [tex]\( y \rightarrow \boxed{\infty} \)[/tex].
- When [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( y \rightarrow \boxed{-\infty} \)[/tex].
1. Finding the [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex].
Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ P(0) = 0^3 + 0^2 - 42 \cdot 0 = 0 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( 0 \)[/tex].
2. Finding the [tex]\( x \)[/tex]-intercepts:
The [tex]\( x \)[/tex]-intercepts are the values of [tex]\( x \)[/tex] where the function [tex]\( P(x) = 0 \)[/tex].
We solve the equation:
[tex]\[ x^3 + x^2 - 42x = 0 \][/tex]
Factor out the common term [tex]\( x \)[/tex]:
[tex]\[ x(x^2 + x - 42) = 0 \][/tex]
This gives us one [tex]\( x \)[/tex]-intercept at [tex]\( x = 0 \)[/tex].
Now, we solve the quadratic equation [tex]\( x^2 + x - 42 \)[/tex]:
[tex]\[ x^2 + x - 42 = 0 \][/tex]
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] with [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -42 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-42)}}{2(1)} = \frac{-1 \pm \sqrt{1 + 168}}{2} = \frac{-1 \pm \sqrt{169}}{2} = \frac{-1 \pm 13}{2} \][/tex]
Therefore, we get:
[tex]\[ x = \frac{-1 + 13}{2} = 6 \quad \text{and} \quad x = \frac{-1 - 13}{2} = -7 \][/tex]
So, the [tex]\( x \)[/tex]-intercepts are [tex]\( -7 \)[/tex], [tex]\( 0 \)[/tex], and [tex]\( 6 \)[/tex].
3. Analyzing the end behavior as [tex]\( x \rightarrow \infty \)[/tex]:
As [tex]\( x \)[/tex] approaches infinity, the term [tex]\( x^3 \)[/tex] will dominate because it has the highest power.
Therefore:
[tex]\[ \lim_ {x \to \infty} (x^3 + x^2 - 42x) = \infty \][/tex]
4. Analyzing the end behavior as [tex]\( x \rightarrow -\infty \)[/tex]:
Similarly, as [tex]\( x \)[/tex] approaches negative infinity, the term [tex]\( x^3 \)[/tex] will still dominate.
Therefore:
[tex]\[ \lim_ {x \to -\infty} (x^3 + x^2 - 42x) = -\infty \][/tex]
Summarizing all the findings:
- The [tex]\( y \)[/tex]-intercept is [tex]\( \boxed{0} \)[/tex].
- The [tex]\( x \)[/tex]-intercepts are [tex]\( \boxed{-7, 0, 6} \)[/tex].
- When [tex]\( x \rightarrow \infty \)[/tex], [tex]\( y \rightarrow \boxed{\infty} \)[/tex].
- When [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( y \rightarrow \boxed{-\infty} \)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.