Find the best answers to your questions with the help of IDNLearn.com's knowledgeable users. Explore a wide array of topics and find reliable answers from our experienced community members.

Given the function [tex]P(x) = x^3 + x^2 - 42x[/tex]:

1. The [tex]\(y\)[/tex]-intercept is [tex]\(\square\)[/tex]
2. The [tex]\(x\)[/tex]-intercepts are [tex]\(\square\)[/tex]
3. When [tex]\(x \rightarrow \infty\)[/tex], [tex]\(y \rightarrow \square\)[/tex]
4. When [tex]\(x \rightarrow -\infty\)[/tex], [tex]\(y \rightarrow \square\)[/tex]


Sagot :

Let's analyze the function [tex]\( P(x) = x^3 + x^2 - 42x \)[/tex].

1. Finding the [tex]\( y \)[/tex]-intercept:

The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex].

Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ P(0) = 0^3 + 0^2 - 42 \cdot 0 = 0 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( 0 \)[/tex].

2. Finding the [tex]\( x \)[/tex]-intercepts:

The [tex]\( x \)[/tex]-intercepts are the values of [tex]\( x \)[/tex] where the function [tex]\( P(x) = 0 \)[/tex].

We solve the equation:
[tex]\[ x^3 + x^2 - 42x = 0 \][/tex]

Factor out the common term [tex]\( x \)[/tex]:
[tex]\[ x(x^2 + x - 42) = 0 \][/tex]

This gives us one [tex]\( x \)[/tex]-intercept at [tex]\( x = 0 \)[/tex].

Now, we solve the quadratic equation [tex]\( x^2 + x - 42 \)[/tex]:
[tex]\[ x^2 + x - 42 = 0 \][/tex]

Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] with [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -42 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-42)}}{2(1)} = \frac{-1 \pm \sqrt{1 + 168}}{2} = \frac{-1 \pm \sqrt{169}}{2} = \frac{-1 \pm 13}{2} \][/tex]

Therefore, we get:
[tex]\[ x = \frac{-1 + 13}{2} = 6 \quad \text{and} \quad x = \frac{-1 - 13}{2} = -7 \][/tex]

So, the [tex]\( x \)[/tex]-intercepts are [tex]\( -7 \)[/tex], [tex]\( 0 \)[/tex], and [tex]\( 6 \)[/tex].

3. Analyzing the end behavior as [tex]\( x \rightarrow \infty \)[/tex]:

As [tex]\( x \)[/tex] approaches infinity, the term [tex]\( x^3 \)[/tex] will dominate because it has the highest power.

Therefore:
[tex]\[ \lim_ {x \to \infty} (x^3 + x^2 - 42x) = \infty \][/tex]

4. Analyzing the end behavior as [tex]\( x \rightarrow -\infty \)[/tex]:

Similarly, as [tex]\( x \)[/tex] approaches negative infinity, the term [tex]\( x^3 \)[/tex] will still dominate.

Therefore:
[tex]\[ \lim_ {x \to -\infty} (x^3 + x^2 - 42x) = -\infty \][/tex]

Summarizing all the findings:

- The [tex]\( y \)[/tex]-intercept is [tex]\( \boxed{0} \)[/tex].
- The [tex]\( x \)[/tex]-intercepts are [tex]\( \boxed{-7, 0, 6} \)[/tex].
- When [tex]\( x \rightarrow \infty \)[/tex], [tex]\( y \rightarrow \boxed{\infty} \)[/tex].
- When [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( y \rightarrow \boxed{-\infty} \)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.