Discover new knowledge and insights with IDNLearn.com's extensive Q&A platform. Get prompt and accurate answers to your questions from our community of experts who are always ready to help.

In this question, you must show detailed reasoning. Solutions relying on calculator technology are not acceptable.

Given:
[tex]\[ f(x) = x^2(2x + 1) - 15x \][/tex]

(a) Solve:
[tex]\[ f(x) = 0 \][/tex]

(b) Hence, solve:
[tex]\[ y^{\frac{4}{3}}\left(2 y^{\frac{2}{3}} + 1\right) - 15 y^{\frac{2}{3}} = 0 \quad \text{for} \quad y \ \textgreater \ 0 \][/tex]

Give your answer in simplified surd form.


Sagot :

Let’s tackle parts (a) and (b) step-by-step:

### Part (a): Solve [tex]\( f(x) = 0 \)[/tex] for [tex]\( f(x) = x^2(2x + 1) - 15x \)[/tex]

1. Define the function: [tex]\( f(x) = x^2(2x + 1) - 15x \)[/tex]

2. Set the function to zero:
[tex]\[ x^2(2x + 1) - 15x = 0 \][/tex]

3. Factor out the common term:
[tex]\[ x \left( x(2x + 1) - 15 \right) = 0 \][/tex]
This gives us two cases to solve: [tex]\( x = 0 \)[/tex] and [tex]\( x(2x + 1) - 15 = 0 \)[/tex].

4. Solve the first case:
[tex]\[ x = 0 \][/tex]

5. Solve the second case:
[tex]\[ x(2x + 1) - 15 = 0 \][/tex]
[tex]\[ 2x^2 + x - 15 = 0 \][/tex]

6. Use the quadratic formula: For [tex]\( ax^2 + bx + c = 0 \)[/tex], the solutions are:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 2 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -15 \)[/tex].

7. Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac = 1^2 - 4 \cdot 2 \cdot (-15) = 1 + 120 = 121 \][/tex]

8. Find the roots:
[tex]\[ x = \frac{-1 \pm \sqrt{121}}{2 \cdot 2} = \frac{-1 \pm 11}{4} \][/tex]
Therefore, the two roots are:
[tex]\[ x = \frac{10}{4} = \frac{5}{2} \quad \text{and} \quad x = \frac{-12}{4} = -3 \][/tex]

So, the solutions to [tex]\( f(x) = 0 \)[/tex] are:
[tex]\[ x = -3, \quad x = 0, \quad \text{and} \quad x = \frac{5}{2} \][/tex]

### Part (b): Solve [tex]\( y^{\frac{4}{3}}(2y^{\frac{2}{3}} + 1) - 15y^{\frac{2}{3}} = 0 \)[/tex] for [tex]\( y > 0 \)[/tex]

1. Let [tex]\( t = y^{\frac{2}{3}} \)[/tex]. Therefore, [tex]\( y = t^{\frac{3}{2}} \)[/tex].

2. Rewrite the equation in terms of [tex]\( t \)[/tex]:
[tex]\[ t^2 (2t + 1) - 15t = 0 \][/tex]

3. Factor out the common term [tex]\( t \)[/tex]:
[tex]\[ t \left( t(2t + 1) - 15 \right) = 0 \][/tex]
This gives us two cases to solve: [tex]\( t = 0 \)[/tex] and [tex]\( t(2t + 1) - 15 = 0 \)[/tex].

4. Solve the first case:
[tex]\[ t = 0 \][/tex]
However, given [tex]\( y > 0 \)[/tex], we discard [tex]\( t = 0 \)[/tex] since [tex]\( t = y^{\frac{2}{3}} \)[/tex].

5. Solve the second case:
[tex]\[ t(2t + 1) - 15 = 0 \][/tex]
[tex]\[ 2t^2 + t - 15 = 0 \][/tex]

6. Use the quadratic formula again:
[tex]\[ t = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-15)}}{2 \cdot 2} = \frac{-1 \pm \sqrt{1 + 120}}{4} = \frac{-1 \pm \sqrt{121}}{4} \][/tex]
Therefore, the two roots are:
[tex]\[ t = \frac{10}{4} = \frac{5}{2} \quad \text{and} \quad t = \frac{-12}{4} = -3 \][/tex]

7. Consider only the positive solution:
[tex]\[ t = \frac{5}{2} \][/tex]

8. Find the corresponding [tex]\( y \)[/tex]:
[tex]\[ y = t^{\frac{3}{2}} = \left( \frac{5}{2} \right)^{\frac{3}{2}} \][/tex]

So, the solution to [tex]\( y^{\frac{4}{3}}(2y^{\frac{2}{3}} + 1) - 15y^{\frac{2}{3}} = 0 \)[/tex] for [tex]\( y > 0 \)[/tex] is:
[tex]\[ y = \left( \frac{5}{2} \right)^{\frac{3}{2}} \][/tex]

When simplified to numerical form, if desired, it is:
[tex]\[ y \approx 3.95284707521047 \][/tex]