Discover a wealth of knowledge and get your questions answered at IDNLearn.com. Our platform offers reliable and detailed answers, ensuring you have the information you need.
Sagot :
Sure, let's differentiate each function with respect to their independent variable.
### 8.1) Differentiating [tex]\( y = \ln |a t + 3| + \ln t \)[/tex] with respect to [tex]\( t \)[/tex]
1. Recall the properties and differentiation rules of logarithmic functions.
2. For [tex]\( \ln |a t + 3| \)[/tex], we use the chain rule:
[tex]\[ \frac{d}{dt}\left(\ln |a t + 3|\right) = \frac{d}{dt}\left(\ln u\right) \cdot \frac{du}{dt}, \quad \text{where} \ u = |a t + 3|. \][/tex]
Differentiating [tex]\( \ln u \)[/tex] gives:
[tex]\[ \frac{d}{dt}\left(\ln u\right) = \frac{1}{u}. \][/tex]
Now, we need [tex]\( \frac{du}{dt} \)[/tex] where [tex]\( u = |a t + 3| \)[/tex]. The absolute value function means we need to consider the derivative inside the absolute value:
[tex]\[ \frac{du}{dt} = a \cdot \frac{a t + 3}{|a t + 3|}. \][/tex]
Combining these:
[tex]\[ \frac{d}{dt}\left(\ln |a t + 3|\right) = \frac{a}{a t + 3}. \][/tex]
3. For [tex]\( \ln t \)[/tex], the derivative is straightforward:
[tex]\[ \frac{d}{dt}(\ln t) = \frac{1}{t}. \][/tex]
4. Combining these results:
[tex]\[ \frac{dy}{dt} = \frac{a}{a t + 3} + \frac{1}{t}. \][/tex]
### 8.2) Differentiating [tex]\( g(t) = 2^{\ln 2 t} + \ln e^{2 t} \)[/tex] with respect to [tex]\( t \)[/tex]
1. Consider the function [tex]\( 2^{\ln 2 t} \)[/tex]. This can be simplified using the properties of exponents and logarithms:
[tex]\[ 2^{\ln 2 t} = (2^{\ln 2})^t = e^{(\ln 2) \ln 2 t} = e^{(\ln 2)^2 t}. \][/tex]
Then, we differentiate:
[tex]\[ \frac{d}{dt} \left( e^{(\ln 2)^2 t} \right) = e^{(\ln 2)^2 t} \cdot (\ln 2)^2. \][/tex]
2. For [tex]\( \ln e^{2 t} \)[/tex], recall that [tex]\( \ln e^u = u \)[/tex]:
[tex]\[ \ln e^{2 t} = 2 t, \][/tex]
and its derivative:
[tex]\[ \frac{d}{dt} (2 t) = 2. \][/tex]
3. Combining these:
[tex]\[ \frac{dg}{dt} = e^{(\ln 2)^2 t} \cdot (\ln 2)^2 + 2. \][/tex]
To get the exact form of [tex]\( g(t) \)[/tex]:
[tex]\[ e^{(\ln 2)^2 t} \cdot (\ln 2)^2 \text{ can be written as } 2^{t \ln 2} \cdot (\ln 2)^2. \][/tex]
Combining all results:
[tex]\[ \frac{dy}{dt} = \frac{a}{a t + 3} + \frac{1}{t}, \quad \frac{dg}{dt} = 2^{t \ln 2} \cdot (\ln 2)^2 + 2. \][/tex]
### 8.1) Differentiating [tex]\( y = \ln |a t + 3| + \ln t \)[/tex] with respect to [tex]\( t \)[/tex]
1. Recall the properties and differentiation rules of logarithmic functions.
2. For [tex]\( \ln |a t + 3| \)[/tex], we use the chain rule:
[tex]\[ \frac{d}{dt}\left(\ln |a t + 3|\right) = \frac{d}{dt}\left(\ln u\right) \cdot \frac{du}{dt}, \quad \text{where} \ u = |a t + 3|. \][/tex]
Differentiating [tex]\( \ln u \)[/tex] gives:
[tex]\[ \frac{d}{dt}\left(\ln u\right) = \frac{1}{u}. \][/tex]
Now, we need [tex]\( \frac{du}{dt} \)[/tex] where [tex]\( u = |a t + 3| \)[/tex]. The absolute value function means we need to consider the derivative inside the absolute value:
[tex]\[ \frac{du}{dt} = a \cdot \frac{a t + 3}{|a t + 3|}. \][/tex]
Combining these:
[tex]\[ \frac{d}{dt}\left(\ln |a t + 3|\right) = \frac{a}{a t + 3}. \][/tex]
3. For [tex]\( \ln t \)[/tex], the derivative is straightforward:
[tex]\[ \frac{d}{dt}(\ln t) = \frac{1}{t}. \][/tex]
4. Combining these results:
[tex]\[ \frac{dy}{dt} = \frac{a}{a t + 3} + \frac{1}{t}. \][/tex]
### 8.2) Differentiating [tex]\( g(t) = 2^{\ln 2 t} + \ln e^{2 t} \)[/tex] with respect to [tex]\( t \)[/tex]
1. Consider the function [tex]\( 2^{\ln 2 t} \)[/tex]. This can be simplified using the properties of exponents and logarithms:
[tex]\[ 2^{\ln 2 t} = (2^{\ln 2})^t = e^{(\ln 2) \ln 2 t} = e^{(\ln 2)^2 t}. \][/tex]
Then, we differentiate:
[tex]\[ \frac{d}{dt} \left( e^{(\ln 2)^2 t} \right) = e^{(\ln 2)^2 t} \cdot (\ln 2)^2. \][/tex]
2. For [tex]\( \ln e^{2 t} \)[/tex], recall that [tex]\( \ln e^u = u \)[/tex]:
[tex]\[ \ln e^{2 t} = 2 t, \][/tex]
and its derivative:
[tex]\[ \frac{d}{dt} (2 t) = 2. \][/tex]
3. Combining these:
[tex]\[ \frac{dg}{dt} = e^{(\ln 2)^2 t} \cdot (\ln 2)^2 + 2. \][/tex]
To get the exact form of [tex]\( g(t) \)[/tex]:
[tex]\[ e^{(\ln 2)^2 t} \cdot (\ln 2)^2 \text{ can be written as } 2^{t \ln 2} \cdot (\ln 2)^2. \][/tex]
Combining all results:
[tex]\[ \frac{dy}{dt} = \frac{a}{a t + 3} + \frac{1}{t}, \quad \frac{dg}{dt} = 2^{t \ln 2} \cdot (\ln 2)^2 + 2. \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.