Get comprehensive solutions to your questions with the help of IDNLearn.com's experts. Our Q&A platform offers detailed and trustworthy answers to ensure you have the information you need.
Sagot :
To find the radius of curvature [tex]\( R \)[/tex] of the rectangular hyperbola given by the equation
[tex]\[ r^2 = a^2 \sec(2\theta), \][/tex]
we will follow a series of steps involving differentiation and the use of a specific formula for radius of curvature in polar coordinates.
### Step-by-Step Solution:
1. Given Equation:
[tex]\[ r^2 = a^2 \sec(2\theta) \][/tex]
2. Solving for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{a^2}{\cos(2\theta)}} = \frac{a}{\sqrt{\cos(2\theta)}} \][/tex]
3. First Derivative [tex]\( \frac{dr}{d\theta} \)[/tex]:
Differentiate [tex]\( r \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ r' = \frac{d}{d\theta} \left( \frac{a}{\sqrt{\cos(2\theta)}} \right) \][/tex]
Using the chain rule:
[tex]\[ r' = \frac{a \cdot \left(- \frac{\sin(2\theta)}{\sqrt{\cos(2\theta)}^3} \cdot 2\right)}{2} = \frac{a \cdot (-2\sin(2\theta))}{2\cos(2\theta)^{3/2}} = \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \][/tex]
4. Second Derivative [tex]\( \frac{d^2r}{d\theta^2} \)[/tex]:
Differentiate [tex]\( r' \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ r'' = \frac{d}{d\theta} \left( \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \right) \][/tex]
Using the product and chain rule, we get:
[tex]\[ r'' = a \left[ \frac{(2\cos(2\theta) \cdot 3\sin(2\theta))}{\cos(2\theta)^3} + \frac{2(-\cos(2\theta)^2\sin(2\theta))}{\cos(2\theta)^3} \right] = a \left( \frac{3\sin(2\theta)^2}{\cos(2\theta)^{5/2}} - \frac{2\cos(2\theta)}{\cos(2\theta)^{3/2}} \right) \][/tex]
Simplifying:
[tex]\[ r'' = \frac{3a\sin(2\theta)^2}{\cos(2\theta)^{5/2}} + \frac{2a}{\cos(2\theta)^{3/2}} \][/tex]
5. Radius of Curvature [tex]\( R \)[/tex]:
The radius of curvature formula in polar coordinates is:
[tex]\[ R = \frac{(1 + (r')^2)^{3/2}}{|r''|} \][/tex]
Substituting [tex]\( r' \)[/tex] and [tex]\( r'' \)[/tex]:
[tex]\[ R = \frac{\left(1 + \left( \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \right)^2\right)^{3/2}}{\left| \frac{3a \sin(2\theta)^2}{\cos(2\theta)^{5/2}} + \frac{2a}{\cos(2\theta)^{3/2}} \right| } \][/tex]
Simplifying the expression inside the numerator:
[tex]\[ R = \frac{\left(1 + \frac{a^2 \sin^2 (2\theta)}{\cos^3 (2\theta)} \right)^{3/2}}{\left| \frac{3a \sin^2(2\theta)}{\cos^{5/2}(2\theta)} + \frac{2a}{\cos^{3/2}(2\theta)} \right| } \][/tex]
Thus, the final formula for the radius of curvature [tex]\( R \)[/tex] is:
[tex]\[ R = \frac{\left(a^2 \frac{\sin^2 (2\theta)}{\cos^3 (2\theta)} + 1 \right)^{3/2}}{\left| \frac{3\sqrt{a^2 \sec(2 \theta)} \sin^2 (2\theta)}{\cos^{2} (2\theta)} + \frac{2\sqrt{a^2 \sec(2 \theta)}}{\cos (2 \theta)} \right|} \][/tex]
In conclusion, after simplifying, the radius of curvature of the given rectangular hyperbola is:
[tex]\[ R = \frac{\left(\frac{a^2 \sin^2 (2\theta)}{\cos^3 (2\theta)} + 1 \right)^{3/2}}{\left| \frac{3\sqrt{a^2 \sec(2 \theta)} \sin^2 (2\theta)}{\cos^{2} (2\theta)} + \frac{2\sqrt{a^2 \sec(2 \theta)}}{\cos (2 \theta)} \right| }. \][/tex]
[tex]\[ r^2 = a^2 \sec(2\theta), \][/tex]
we will follow a series of steps involving differentiation and the use of a specific formula for radius of curvature in polar coordinates.
### Step-by-Step Solution:
1. Given Equation:
[tex]\[ r^2 = a^2 \sec(2\theta) \][/tex]
2. Solving for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{a^2}{\cos(2\theta)}} = \frac{a}{\sqrt{\cos(2\theta)}} \][/tex]
3. First Derivative [tex]\( \frac{dr}{d\theta} \)[/tex]:
Differentiate [tex]\( r \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ r' = \frac{d}{d\theta} \left( \frac{a}{\sqrt{\cos(2\theta)}} \right) \][/tex]
Using the chain rule:
[tex]\[ r' = \frac{a \cdot \left(- \frac{\sin(2\theta)}{\sqrt{\cos(2\theta)}^3} \cdot 2\right)}{2} = \frac{a \cdot (-2\sin(2\theta))}{2\cos(2\theta)^{3/2}} = \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \][/tex]
4. Second Derivative [tex]\( \frac{d^2r}{d\theta^2} \)[/tex]:
Differentiate [tex]\( r' \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ r'' = \frac{d}{d\theta} \left( \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \right) \][/tex]
Using the product and chain rule, we get:
[tex]\[ r'' = a \left[ \frac{(2\cos(2\theta) \cdot 3\sin(2\theta))}{\cos(2\theta)^3} + \frac{2(-\cos(2\theta)^2\sin(2\theta))}{\cos(2\theta)^3} \right] = a \left( \frac{3\sin(2\theta)^2}{\cos(2\theta)^{5/2}} - \frac{2\cos(2\theta)}{\cos(2\theta)^{3/2}} \right) \][/tex]
Simplifying:
[tex]\[ r'' = \frac{3a\sin(2\theta)^2}{\cos(2\theta)^{5/2}} + \frac{2a}{\cos(2\theta)^{3/2}} \][/tex]
5. Radius of Curvature [tex]\( R \)[/tex]:
The radius of curvature formula in polar coordinates is:
[tex]\[ R = \frac{(1 + (r')^2)^{3/2}}{|r''|} \][/tex]
Substituting [tex]\( r' \)[/tex] and [tex]\( r'' \)[/tex]:
[tex]\[ R = \frac{\left(1 + \left( \frac{a \sin(2\theta)}{\cos(2\theta)^{3/2}} \right)^2\right)^{3/2}}{\left| \frac{3a \sin(2\theta)^2}{\cos(2\theta)^{5/2}} + \frac{2a}{\cos(2\theta)^{3/2}} \right| } \][/tex]
Simplifying the expression inside the numerator:
[tex]\[ R = \frac{\left(1 + \frac{a^2 \sin^2 (2\theta)}{\cos^3 (2\theta)} \right)^{3/2}}{\left| \frac{3a \sin^2(2\theta)}{\cos^{5/2}(2\theta)} + \frac{2a}{\cos^{3/2}(2\theta)} \right| } \][/tex]
Thus, the final formula for the radius of curvature [tex]\( R \)[/tex] is:
[tex]\[ R = \frac{\left(a^2 \frac{\sin^2 (2\theta)}{\cos^3 (2\theta)} + 1 \right)^{3/2}}{\left| \frac{3\sqrt{a^2 \sec(2 \theta)} \sin^2 (2\theta)}{\cos^{2} (2\theta)} + \frac{2\sqrt{a^2 \sec(2 \theta)}}{\cos (2 \theta)} \right|} \][/tex]
In conclusion, after simplifying, the radius of curvature of the given rectangular hyperbola is:
[tex]\[ R = \frac{\left(\frac{a^2 \sin^2 (2\theta)}{\cos^3 (2\theta)} + 1 \right)^{3/2}}{\left| \frac{3\sqrt{a^2 \sec(2 \theta)} \sin^2 (2\theta)}{\cos^{2} (2\theta)} + \frac{2\sqrt{a^2 \sec(2 \theta)}}{\cos (2 \theta)} \right| }. \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For dependable and accurate answers, visit IDNLearn.com. Thanks for visiting, and see you next time for more helpful information.