Get the information you need with the help of IDNLearn.com's extensive Q&A platform. Discover reliable and timely information on any topic from our network of experienced professionals.
Sagot :
To determine which equations represent circles with the smallest and largest radii, we first need to rewrite each equation in the standard form of a circle's equation: [tex]\((x-h)^2 + (y-k)^2 = r^2\)[/tex]. This is accomplished by completing the square.
Let's complete the square for each equation:
### Equation 1:
[tex]\[ 2x^2 + 2y^2 + 16x - 4y + 30 = 0 \][/tex]
1. Divide by 2 to simplify:
[tex]\[ x^2 + y^2 + 8x - 2y + 15 = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 + y^2 + 8x - 2y = -15 \][/tex]
3. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 + 8x + 16 + y^2 - 2y + 1 = -15 + 16 + 1 \][/tex]
4. Factor the perfect squares and solve for the right side:
[tex]\[ (x + 4)^2 + (y - 1)^2 = 2 \][/tex]
Here, the radius [tex]\(r_1 = \sqrt{2}\)[/tex].
### Equation 2:
[tex]\[ x^2 + y^2 + 6x - 4y - 20 = 0 \][/tex]
1. Move the constant term to the right side:
[tex]\[ x^2 + y^2 + 6x - 4y = 20 \][/tex]
2. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 + 6x + 9 + y^2 - 4y + 4 = 20 + 9 + 4 \][/tex]
3. Factor the perfect squares and solve for the right side:
[tex]\[ (x + 3)^2 + (y - 2)^2 = 33 \][/tex]
Here, the radius [tex]\(r_2 = \sqrt{33}\)[/tex].
### Equation 3:
[tex]\[ 4x^2 + 4y^2 - 16x - 24y + 51 = 0 \][/tex]
1. Divide by 4 to simplify:
[tex]\[ x^2 + y^2 - 4x - 6y + \frac{51}{4} = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 + y^2 - 4x - 6y = -\frac{51}{4} \][/tex]
3. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 - 4x + 4 + y^2 - 6y + 9 = -\frac{51}{4} + 4 + 9 \][/tex]
4. Calculate the right side:
[tex]\[ -\frac{51}{4} + 4 + 9 = -\frac{51}{4} + \frac{16}{4} + \frac{36}{4} = -\frac{51 - 16 - 36}{4} = \frac{1}{4} \][/tex]
5. Factor the perfect squares:
[tex]\[ (x - 2)^2 + (y - 3)^2 = \frac{1}{4} \][/tex]
Here, the radius [tex]\(r_3 = \sqrt{\frac{1}{4}} = \frac{1}{2}\)[/tex].
### Summary:
1. Radius for Equation 1: [tex]\( r_1 = \sqrt{2} \)[/tex]
2. Radius for Equation 2: [tex]\( r_2 = \sqrt{33} \)[/tex]
3. Radius for Equation 3: [tex]\( r_3 = \frac{1}{2} \)[/tex]
Smallest radius: [tex]\( \frac{1}{2} \)[/tex] (Equation 3: [tex]\( 4x^2 + 4y^2 - 16x - 24y + 51 = 0 \)[/tex])
Largest radius: [tex]\( \sqrt{33} \)[/tex] (Equation 2: [tex]\( x^2 + y^2 + 6x - 4y - 20 = 0 \)[/tex])
The table should be completed as follows:
| Radius | Equation |
|---------------|------------------------------------------------|
| Smallest | [tex]\( 4 x^2 + 4 y^2 - 16 x - 24 y + 51 = 0 \)[/tex] |
| Largest | [tex]\( x^2 + y^2 + 6 x - 4 y - 20 = 0 \)[/tex] |
Let's complete the square for each equation:
### Equation 1:
[tex]\[ 2x^2 + 2y^2 + 16x - 4y + 30 = 0 \][/tex]
1. Divide by 2 to simplify:
[tex]\[ x^2 + y^2 + 8x - 2y + 15 = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 + y^2 + 8x - 2y = -15 \][/tex]
3. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 + 8x + 16 + y^2 - 2y + 1 = -15 + 16 + 1 \][/tex]
4. Factor the perfect squares and solve for the right side:
[tex]\[ (x + 4)^2 + (y - 1)^2 = 2 \][/tex]
Here, the radius [tex]\(r_1 = \sqrt{2}\)[/tex].
### Equation 2:
[tex]\[ x^2 + y^2 + 6x - 4y - 20 = 0 \][/tex]
1. Move the constant term to the right side:
[tex]\[ x^2 + y^2 + 6x - 4y = 20 \][/tex]
2. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 + 6x + 9 + y^2 - 4y + 4 = 20 + 9 + 4 \][/tex]
3. Factor the perfect squares and solve for the right side:
[tex]\[ (x + 3)^2 + (y - 2)^2 = 33 \][/tex]
Here, the radius [tex]\(r_2 = \sqrt{33}\)[/tex].
### Equation 3:
[tex]\[ 4x^2 + 4y^2 - 16x - 24y + 51 = 0 \][/tex]
1. Divide by 4 to simplify:
[tex]\[ x^2 + y^2 - 4x - 6y + \frac{51}{4} = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 + y^2 - 4x - 6y = -\frac{51}{4} \][/tex]
3. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 - 4x + 4 + y^2 - 6y + 9 = -\frac{51}{4} + 4 + 9 \][/tex]
4. Calculate the right side:
[tex]\[ -\frac{51}{4} + 4 + 9 = -\frac{51}{4} + \frac{16}{4} + \frac{36}{4} = -\frac{51 - 16 - 36}{4} = \frac{1}{4} \][/tex]
5. Factor the perfect squares:
[tex]\[ (x - 2)^2 + (y - 3)^2 = \frac{1}{4} \][/tex]
Here, the radius [tex]\(r_3 = \sqrt{\frac{1}{4}} = \frac{1}{2}\)[/tex].
### Summary:
1. Radius for Equation 1: [tex]\( r_1 = \sqrt{2} \)[/tex]
2. Radius for Equation 2: [tex]\( r_2 = \sqrt{33} \)[/tex]
3. Radius for Equation 3: [tex]\( r_3 = \frac{1}{2} \)[/tex]
Smallest radius: [tex]\( \frac{1}{2} \)[/tex] (Equation 3: [tex]\( 4x^2 + 4y^2 - 16x - 24y + 51 = 0 \)[/tex])
Largest radius: [tex]\( \sqrt{33} \)[/tex] (Equation 2: [tex]\( x^2 + y^2 + 6x - 4y - 20 = 0 \)[/tex])
The table should be completed as follows:
| Radius | Equation |
|---------------|------------------------------------------------|
| Smallest | [tex]\( 4 x^2 + 4 y^2 - 16 x - 24 y + 51 = 0 \)[/tex] |
| Largest | [tex]\( x^2 + y^2 + 6 x - 4 y - 20 = 0 \)[/tex] |
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com has the solutions you’re looking for. Thanks for visiting, and see you next time for more reliable information.