Get the answers you need from a community of experts on IDNLearn.com. Join our interactive Q&A community and access a wealth of reliable answers to your most pressing questions.
Sagot :
To find the probability density function (pdf) of [tex]\( U = Y_1 - Y_2 \)[/tex] and subsequently its expected value [tex]\( E(U) \)[/tex], we'll proceed through several steps.
### Step 1: Range of [tex]\( U \)[/tex]
First, we need to determine the range of [tex]\( U \)[/tex]. Given that [tex]\( 0 \leq Y_2 \leq Y_1 \leq 1 \)[/tex]:
[tex]\[ U = Y_1 - Y_2 \][/tex]
Given [tex]\( Y_1 \)[/tex] ranges from 0 to 1 and [tex]\( Y_2 \)[/tex] from 0 to [tex]\( Y_1 \)[/tex]:
[tex]\[ 0 \leq U \leq 1 \][/tex]
### Step 2: Determine the Joint Pdf of [tex]\( Y_1 \)[/tex] and [tex]\( Y_2 \)[/tex]
The joint pdf of [tex]\( Y_1 \)[/tex] and [tex]\( Y_2 \)[/tex] is:
[tex]\[ f(y_1, y_2) = \left\{ \begin{array}{ll} 3 y_1 & \text{if } 0 \leq y_2 \leq y_1 \leq 1, \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]
### Step 3: Transformation to New Variable [tex]\( U \)[/tex]
We need to express [tex]\( f_{U}(u) \)[/tex] in terms of the new variable [tex]\( U \)[/tex].
Define [tex]\( U = Y_1 - Y_2 \)[/tex]. Thus, [tex]\( Y_2 = Y_1 - U \)[/tex].
For a given [tex]\( u \)[/tex], [tex]\( y_2 = y_1 - u \)[/tex]. Consequently, [tex]\( y_1 \)[/tex] ranges from [tex]\( u \)[/tex] to 1, since [tex]\( y_1 ≥ y_2 \)[/tex]:
[tex]\[ \int_u^1 f(y_1, y_1 - u) dy_1 \][/tex]
### Step 4: Calculate the Pdf of [tex]\( U \)[/tex]
Inserting [tex]\( y_2 = y_1 - u \)[/tex] into [tex]\( f(y_1, y_2) \)[/tex]:
[tex]\[ f(y_1, y_1 - u) = 3 y_1 \][/tex]
So,
[tex]\[ f_U(u) = \int_u^1 3 y_1 dy_1 \][/tex]
### Step 5: Solve the Integral
Performing the integration:
[tex]\[ f_U(u) = \int_u^1 3 y_1 dy_1 = \left[ \frac{3 y_1^2}{2} \right]_u^1 = \frac{3}{2} \left(1^2 - u^2\right) = \frac{3}{2} (1 - u^2) \][/tex]
Hence the probability density function of [tex]\( U \)[/tex] is:
[tex]\[ f_U(u) = \left\{ \begin{array}{ll} \frac{3}{2} (1 - u^2) & \text{if } 0 \leq u \leq 1, \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]
### Step 6: Expected Value [tex]\( E(U) \)[/tex]
Finally, let's calculate [tex]\( E(U) \)[/tex]:
[tex]\[ E(U) = \int_0^1 u f_U(u) du = \int_0^1 u \frac{3}{2} (1 - u^2) du \][/tex]
Simplifying the integral:
[tex]\[ E(U) = \frac{3}{2} \int_0^1 \left( u - u^3 \right) du = \frac{3}{2} \left( \int_0^1 u du - \int_0^1 u^3 du \right) \][/tex]
Evaluating the integrals:
[tex]\[ \int_0^1 u du = \left[ \frac{u^2}{2} \right]_0^1 = \frac{1}{2} \][/tex]
[tex]\[ \int_0^1 u^3 du = \left[ \frac{u^4}{4} \right]_0^1 = \frac{1}{4} \][/tex]
Combining these:
[tex]\[ E(U) = \frac{3}{2} \left( \frac{1}{2} - \frac{1}{4} \right) = \frac{3}{2} \times \frac{1}{4} = \frac{3}{8} \][/tex]
Thus, the expected value [tex]\( E(U) \)[/tex] is [tex]\( \frac{3}{8} \)[/tex].
### Step 1: Range of [tex]\( U \)[/tex]
First, we need to determine the range of [tex]\( U \)[/tex]. Given that [tex]\( 0 \leq Y_2 \leq Y_1 \leq 1 \)[/tex]:
[tex]\[ U = Y_1 - Y_2 \][/tex]
Given [tex]\( Y_1 \)[/tex] ranges from 0 to 1 and [tex]\( Y_2 \)[/tex] from 0 to [tex]\( Y_1 \)[/tex]:
[tex]\[ 0 \leq U \leq 1 \][/tex]
### Step 2: Determine the Joint Pdf of [tex]\( Y_1 \)[/tex] and [tex]\( Y_2 \)[/tex]
The joint pdf of [tex]\( Y_1 \)[/tex] and [tex]\( Y_2 \)[/tex] is:
[tex]\[ f(y_1, y_2) = \left\{ \begin{array}{ll} 3 y_1 & \text{if } 0 \leq y_2 \leq y_1 \leq 1, \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]
### Step 3: Transformation to New Variable [tex]\( U \)[/tex]
We need to express [tex]\( f_{U}(u) \)[/tex] in terms of the new variable [tex]\( U \)[/tex].
Define [tex]\( U = Y_1 - Y_2 \)[/tex]. Thus, [tex]\( Y_2 = Y_1 - U \)[/tex].
For a given [tex]\( u \)[/tex], [tex]\( y_2 = y_1 - u \)[/tex]. Consequently, [tex]\( y_1 \)[/tex] ranges from [tex]\( u \)[/tex] to 1, since [tex]\( y_1 ≥ y_2 \)[/tex]:
[tex]\[ \int_u^1 f(y_1, y_1 - u) dy_1 \][/tex]
### Step 4: Calculate the Pdf of [tex]\( U \)[/tex]
Inserting [tex]\( y_2 = y_1 - u \)[/tex] into [tex]\( f(y_1, y_2) \)[/tex]:
[tex]\[ f(y_1, y_1 - u) = 3 y_1 \][/tex]
So,
[tex]\[ f_U(u) = \int_u^1 3 y_1 dy_1 \][/tex]
### Step 5: Solve the Integral
Performing the integration:
[tex]\[ f_U(u) = \int_u^1 3 y_1 dy_1 = \left[ \frac{3 y_1^2}{2} \right]_u^1 = \frac{3}{2} \left(1^2 - u^2\right) = \frac{3}{2} (1 - u^2) \][/tex]
Hence the probability density function of [tex]\( U \)[/tex] is:
[tex]\[ f_U(u) = \left\{ \begin{array}{ll} \frac{3}{2} (1 - u^2) & \text{if } 0 \leq u \leq 1, \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]
### Step 6: Expected Value [tex]\( E(U) \)[/tex]
Finally, let's calculate [tex]\( E(U) \)[/tex]:
[tex]\[ E(U) = \int_0^1 u f_U(u) du = \int_0^1 u \frac{3}{2} (1 - u^2) du \][/tex]
Simplifying the integral:
[tex]\[ E(U) = \frac{3}{2} \int_0^1 \left( u - u^3 \right) du = \frac{3}{2} \left( \int_0^1 u du - \int_0^1 u^3 du \right) \][/tex]
Evaluating the integrals:
[tex]\[ \int_0^1 u du = \left[ \frac{u^2}{2} \right]_0^1 = \frac{1}{2} \][/tex]
[tex]\[ \int_0^1 u^3 du = \left[ \frac{u^4}{4} \right]_0^1 = \frac{1}{4} \][/tex]
Combining these:
[tex]\[ E(U) = \frac{3}{2} \left( \frac{1}{2} - \frac{1}{4} \right) = \frac{3}{2} \times \frac{1}{4} = \frac{3}{8} \][/tex]
Thus, the expected value [tex]\( E(U) \)[/tex] is [tex]\( \frac{3}{8} \)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.