Connect with a global community of experts on IDNLearn.com. Join our community to receive prompt, thorough responses from knowledgeable experts.
Sagot :
Let's start by breaking down each part of the composite functions as well as determining the domains.
### Composite Functions:
#### (a) [tex]\( f \circ g \)[/tex]
The notation [tex]\( f \circ g \)[/tex] means [tex]\( f(g(x)) \)[/tex].
Given [tex]\( g(x) = x + 1 \)[/tex], we need to evaluate [tex]\( f \)[/tex] at [tex]\( g(x) \)[/tex]:
[tex]\[ f(g(x)) = f(x + 1) \][/tex]
Since [tex]\( f(x) = |x| \)[/tex], we substitute [tex]\( x + 1 \)[/tex] into [tex]\( f \)[/tex]:
[tex]\[ f(x + 1) = |x + 1| \][/tex]
Thus:
[tex]\[ f \circ g (x) = |x + 1| \][/tex]
#### (b) [tex]\( g \circ f \)[/tex]
The notation [tex]\( g \circ f \)[/tex] means [tex]\( g(f(x)) \)[/tex].
Given [tex]\( f(x) = |x| \)[/tex], we need to evaluate [tex]\( g \)[/tex] at [tex]\( f(x) \)[/tex]:
[tex]\[ g(f(x)) = g(|x|) \][/tex]
Since [tex]\( g(x) = x + 1 \)[/tex], we substitute [tex]\( |x| \)[/tex] into [tex]\( g \)[/tex]:
[tex]\[ g(|x|) = |x| + 1 \][/tex]
Thus:
[tex]\[ g \circ f (x) = |x| + 1 \][/tex]
### Evaluating Composite Functions at a Given Point:
Evaluating these composite functions at [tex]\( x = 2 \)[/tex]:
- For [tex]\( f \circ g (2) \)[/tex]:
[tex]\[ f(g(2)) = f(2 + 1) = f(3) = |3| = 3 \][/tex]
- For [tex]\( g \circ f (2) \)[/tex]:
[tex]\[ g(f(2)) = g(|2|) = g(2) = 2 + 1 = 3 \][/tex]
So, the evaluations are:
[tex]\[ f \circ g (2) = 3 \][/tex]
[tex]\[ g \circ f (2) = 3 \][/tex]
### Domains:
The domain of a function [tex]\( f \)[/tex] is the set of all [tex]\( x \)[/tex] for which the function is defined.
- Domain of [tex]\( f(x) = |x| \)[/tex]:
- The absolute value function [tex]\( f(x) = |x| \)[/tex] is defined for all real numbers.
- Therefore, the domain of [tex]\( f \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex].
- Domain of [tex]\( g(x) = x + 1 \)[/tex]:
- The linear function [tex]\( g(x) = x + 1 \)[/tex] is also defined for all real numbers.
- Therefore, the domain of [tex]\( g \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex].
- Domain of [tex]\( f \circ g (x) = |x + 1| \)[/tex]:
- Since both [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are defined for all real numbers, [tex]\( f(g(x)) \)[/tex] is defined for all real numbers.
- Therefore, the domain of [tex]\( f \circ g \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex].
- Domain of [tex]\( g \circ f (x) = |x| + 1 \)[/tex]:
- Similarly, since both [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are defined for all real numbers, [tex]\( g(f(x)) \)[/tex] is defined for all real numbers.
- Therefore, the domain of [tex]\( g \circ f \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex].
### Summary:
- The evaluations of the composite functions at [tex]\( x = 2 \)[/tex] are:
[tex]\[ f \circ g (2) = 3 \][/tex]
[tex]\[ g \circ f (2) = 3 \][/tex]
- Domains:
- Domain of [tex]\( f \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
- Domain of [tex]\( g \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
- Domain of [tex]\( f \circ g \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
- Domain of [tex]\( g \circ f \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
### Composite Functions:
#### (a) [tex]\( f \circ g \)[/tex]
The notation [tex]\( f \circ g \)[/tex] means [tex]\( f(g(x)) \)[/tex].
Given [tex]\( g(x) = x + 1 \)[/tex], we need to evaluate [tex]\( f \)[/tex] at [tex]\( g(x) \)[/tex]:
[tex]\[ f(g(x)) = f(x + 1) \][/tex]
Since [tex]\( f(x) = |x| \)[/tex], we substitute [tex]\( x + 1 \)[/tex] into [tex]\( f \)[/tex]:
[tex]\[ f(x + 1) = |x + 1| \][/tex]
Thus:
[tex]\[ f \circ g (x) = |x + 1| \][/tex]
#### (b) [tex]\( g \circ f \)[/tex]
The notation [tex]\( g \circ f \)[/tex] means [tex]\( g(f(x)) \)[/tex].
Given [tex]\( f(x) = |x| \)[/tex], we need to evaluate [tex]\( g \)[/tex] at [tex]\( f(x) \)[/tex]:
[tex]\[ g(f(x)) = g(|x|) \][/tex]
Since [tex]\( g(x) = x + 1 \)[/tex], we substitute [tex]\( |x| \)[/tex] into [tex]\( g \)[/tex]:
[tex]\[ g(|x|) = |x| + 1 \][/tex]
Thus:
[tex]\[ g \circ f (x) = |x| + 1 \][/tex]
### Evaluating Composite Functions at a Given Point:
Evaluating these composite functions at [tex]\( x = 2 \)[/tex]:
- For [tex]\( f \circ g (2) \)[/tex]:
[tex]\[ f(g(2)) = f(2 + 1) = f(3) = |3| = 3 \][/tex]
- For [tex]\( g \circ f (2) \)[/tex]:
[tex]\[ g(f(2)) = g(|2|) = g(2) = 2 + 1 = 3 \][/tex]
So, the evaluations are:
[tex]\[ f \circ g (2) = 3 \][/tex]
[tex]\[ g \circ f (2) = 3 \][/tex]
### Domains:
The domain of a function [tex]\( f \)[/tex] is the set of all [tex]\( x \)[/tex] for which the function is defined.
- Domain of [tex]\( f(x) = |x| \)[/tex]:
- The absolute value function [tex]\( f(x) = |x| \)[/tex] is defined for all real numbers.
- Therefore, the domain of [tex]\( f \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex].
- Domain of [tex]\( g(x) = x + 1 \)[/tex]:
- The linear function [tex]\( g(x) = x + 1 \)[/tex] is also defined for all real numbers.
- Therefore, the domain of [tex]\( g \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex].
- Domain of [tex]\( f \circ g (x) = |x + 1| \)[/tex]:
- Since both [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are defined for all real numbers, [tex]\( f(g(x)) \)[/tex] is defined for all real numbers.
- Therefore, the domain of [tex]\( f \circ g \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex].
- Domain of [tex]\( g \circ f (x) = |x| + 1 \)[/tex]:
- Similarly, since both [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are defined for all real numbers, [tex]\( g(f(x)) \)[/tex] is defined for all real numbers.
- Therefore, the domain of [tex]\( g \circ f \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex].
### Summary:
- The evaluations of the composite functions at [tex]\( x = 2 \)[/tex] are:
[tex]\[ f \circ g (2) = 3 \][/tex]
[tex]\[ g \circ f (2) = 3 \][/tex]
- Domains:
- Domain of [tex]\( f \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
- Domain of [tex]\( g \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
- Domain of [tex]\( f \circ g \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
- Domain of [tex]\( g \circ f \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.