Discover new information and get your questions answered with IDNLearn.com. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.
Sagot :
Of course! Let's determine the volume of an oxygen gas sample that is initially at 200 ml and 100°C, when the temperature is changed to 0°C, assuming the pressure remains constant.
### Step-by-Step Solution
1. Initial Conditions:
- Initial volume ([tex]\( V_1 \)[/tex]) = 200 ml
- Initial temperature ([tex]\( T_1 \)[/tex]) = 100°C
2. Final Conditions:
- Final temperature ([tex]\( T_2 \)[/tex]) = 0°C
3. Convert Temperatures to Kelvin:
In the equation for Charles's Law, temperatures should be in Kelvin.
- To convert from Celsius to Kelvin, use the formula: [tex]\( K = °C + 273.15 \)[/tex].
- [tex]\( T_1 \)[/tex] (Initial temperature in Kelvin): 100°C + 273.15 = 373.15 K
- [tex]\( T_2 \)[/tex] (Final temperature in Kelvin): 0°C + 273.15 = 273.15 K
4. Charles's Law:
Charles’s Law states that [tex]\( \frac{V_1}{T_1} = \frac{V_2}{T_2} \)[/tex], where:
- [tex]\( V_1 \)[/tex] and [tex]\( V_2 \)[/tex] are the initial and final volumes respectively,
- [tex]\( T_1 \)[/tex] and [tex]\( T_2 \)[/tex] are the initial and final temperatures respectively.
5. Set Up the Equation:
[tex]\[ \frac{200 \, \text{ml}}{373.15 \, \text{K}} = \frac{V_2}{273.15 \, \text{K}} \][/tex]
6. Solve for [tex]\( V_2 \)[/tex]:
Rearrange the equation to solve for the final volume [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = 200 \, \text{ml} \times \frac{273.15 \, \text{K}}{373.15 \, \text{K}} \][/tex]
7. Calculate [tex]\( V_2 \)[/tex]:
Simplify the expression to find the final volume:
[tex]\[ V_2 = 200 \, \text{ml} \times \frac{273.15}{373.15} \approx 146.402 \, \text{ml} \][/tex]
### Conclusion
The volume of the oxygen gas at 0°C, assuming the pressure remains constant, would be approximately 146.4 ml.
### Step-by-Step Solution
1. Initial Conditions:
- Initial volume ([tex]\( V_1 \)[/tex]) = 200 ml
- Initial temperature ([tex]\( T_1 \)[/tex]) = 100°C
2. Final Conditions:
- Final temperature ([tex]\( T_2 \)[/tex]) = 0°C
3. Convert Temperatures to Kelvin:
In the equation for Charles's Law, temperatures should be in Kelvin.
- To convert from Celsius to Kelvin, use the formula: [tex]\( K = °C + 273.15 \)[/tex].
- [tex]\( T_1 \)[/tex] (Initial temperature in Kelvin): 100°C + 273.15 = 373.15 K
- [tex]\( T_2 \)[/tex] (Final temperature in Kelvin): 0°C + 273.15 = 273.15 K
4. Charles's Law:
Charles’s Law states that [tex]\( \frac{V_1}{T_1} = \frac{V_2}{T_2} \)[/tex], where:
- [tex]\( V_1 \)[/tex] and [tex]\( V_2 \)[/tex] are the initial and final volumes respectively,
- [tex]\( T_1 \)[/tex] and [tex]\( T_2 \)[/tex] are the initial and final temperatures respectively.
5. Set Up the Equation:
[tex]\[ \frac{200 \, \text{ml}}{373.15 \, \text{K}} = \frac{V_2}{273.15 \, \text{K}} \][/tex]
6. Solve for [tex]\( V_2 \)[/tex]:
Rearrange the equation to solve for the final volume [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = 200 \, \text{ml} \times \frac{273.15 \, \text{K}}{373.15 \, \text{K}} \][/tex]
7. Calculate [tex]\( V_2 \)[/tex]:
Simplify the expression to find the final volume:
[tex]\[ V_2 = 200 \, \text{ml} \times \frac{273.15}{373.15} \approx 146.402 \, \text{ml} \][/tex]
### Conclusion
The volume of the oxygen gas at 0°C, assuming the pressure remains constant, would be approximately 146.4 ml.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.