Explore IDNLearn.com's extensive Q&A database and find the answers you need. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.
Sagot :
To solve the rational inequality [tex]\[ \frac{x-6}{x+4} > 0 \][/tex], we need to determine when the fraction [tex]\(\frac{x-6}{x+4}\)[/tex] is greater than zero. Here's a detailed step-by-step solution:
### Step 1: Determine the critical points
The critical points occur where the numerator [tex]\(x-6\)[/tex] and the denominator [tex]\(x+4\)[/tex] are zero.
1. Numerator Zero:
[tex]\[ x - 6 = 0 \implies x = 6 \][/tex]
2. Denominator Zero:
[tex]\[ x + 4 = 0 \implies x = -4 \][/tex]
These points divide the real number line into three intervals: [tex]\( (-\infty, -4) \)[/tex], [tex]\( (-4, 6) \)[/tex], and [tex]\( (6, \infty) \)[/tex].
### Step 2: Test intervals
We need to test a point from each interval to determine where [tex]\(\frac{x-6}{x+4}\)[/tex] is positive.
1. Interval [tex]\( (-\infty, -4) \)[/tex]:
Choose [tex]\( x = -5 \)[/tex]
[tex]\[ \frac{-5 - 6}{-5 + 4} = \frac{-11}{-1} = 11 \quad (\text{positive}) \][/tex]
2. Interval [tex]\( (-4, 6) \)[/tex]:
Choose [tex]\( x = 0 \)[/tex]
[tex]\[ \frac{0 - 6}{0 + 4} = \frac{-6}{4} = -1.5 \quad (\text{negative}) \][/tex]
3. Interval [tex]\( (6, \infty) \)[/tex]:
Choose [tex]\( x = 7 \)[/tex]
[tex]\[ \frac{7 - 6}{7 + 4} = \frac{1}{11} \quad (\text{positive}) \][/tex]
### Step 3: Determine the solution intervals
From the interval testing, we conclude:
- The function is positive in [tex]\( (-\infty, -4) \)[/tex] and [tex]\( (6, \infty) \)[/tex].
- The function changes signs at [tex]\( x = -4 \)[/tex] and [tex]\( x = 6 \)[/tex].
### Step 4: Consider the boundary points
- At [tex]\( x = -4 \)[/tex], the denominator is zero, so the fraction is undefined. Thus, [tex]\( x = -4 \)[/tex] is not included in the solution set.
- At [tex]\( x = 6 \)[/tex], the numerator is zero. Since the inequality is strict ([tex]\(> 0\)[/tex]), [tex]\( x = 6 \)[/tex] is not included in the solution set.
### Step 5: Express the solution set in interval notation
Combining the results from the above steps:
- The solution set is [tex]\( (-\infty, -4) \cup (6, \infty) \)[/tex].
### Step 6: Graph the solution set on a real number line
1. Draw a number line.
2. Mark the critical points [tex]\( x = -4 \)[/tex] and [tex]\( x = 6 \)[/tex] with open circles (since they are not included in the solution set).
3. Shade the intervals [tex]\( (-\infty, -4) \)[/tex] and [tex]\( (6, \infty) \)[/tex].
The final graph should show open circles at [tex]\( -4 \)[/tex] and [tex]\( 6 \)[/tex] with shading to the left of [tex]\( -4 \)[/tex] and to the right of [tex]\( 6 \)[/tex].
Solution in interval notation:
[tex]\[ (-\infty, -4) \cup (6, \infty) \][/tex]
This solution set shows where the inequality [tex]\(\frac{x-6}{x+4} > 0\)[/tex] holds true.
### Step 1: Determine the critical points
The critical points occur where the numerator [tex]\(x-6\)[/tex] and the denominator [tex]\(x+4\)[/tex] are zero.
1. Numerator Zero:
[tex]\[ x - 6 = 0 \implies x = 6 \][/tex]
2. Denominator Zero:
[tex]\[ x + 4 = 0 \implies x = -4 \][/tex]
These points divide the real number line into three intervals: [tex]\( (-\infty, -4) \)[/tex], [tex]\( (-4, 6) \)[/tex], and [tex]\( (6, \infty) \)[/tex].
### Step 2: Test intervals
We need to test a point from each interval to determine where [tex]\(\frac{x-6}{x+4}\)[/tex] is positive.
1. Interval [tex]\( (-\infty, -4) \)[/tex]:
Choose [tex]\( x = -5 \)[/tex]
[tex]\[ \frac{-5 - 6}{-5 + 4} = \frac{-11}{-1} = 11 \quad (\text{positive}) \][/tex]
2. Interval [tex]\( (-4, 6) \)[/tex]:
Choose [tex]\( x = 0 \)[/tex]
[tex]\[ \frac{0 - 6}{0 + 4} = \frac{-6}{4} = -1.5 \quad (\text{negative}) \][/tex]
3. Interval [tex]\( (6, \infty) \)[/tex]:
Choose [tex]\( x = 7 \)[/tex]
[tex]\[ \frac{7 - 6}{7 + 4} = \frac{1}{11} \quad (\text{positive}) \][/tex]
### Step 3: Determine the solution intervals
From the interval testing, we conclude:
- The function is positive in [tex]\( (-\infty, -4) \)[/tex] and [tex]\( (6, \infty) \)[/tex].
- The function changes signs at [tex]\( x = -4 \)[/tex] and [tex]\( x = 6 \)[/tex].
### Step 4: Consider the boundary points
- At [tex]\( x = -4 \)[/tex], the denominator is zero, so the fraction is undefined. Thus, [tex]\( x = -4 \)[/tex] is not included in the solution set.
- At [tex]\( x = 6 \)[/tex], the numerator is zero. Since the inequality is strict ([tex]\(> 0\)[/tex]), [tex]\( x = 6 \)[/tex] is not included in the solution set.
### Step 5: Express the solution set in interval notation
Combining the results from the above steps:
- The solution set is [tex]\( (-\infty, -4) \cup (6, \infty) \)[/tex].
### Step 6: Graph the solution set on a real number line
1. Draw a number line.
2. Mark the critical points [tex]\( x = -4 \)[/tex] and [tex]\( x = 6 \)[/tex] with open circles (since they are not included in the solution set).
3. Shade the intervals [tex]\( (-\infty, -4) \)[/tex] and [tex]\( (6, \infty) \)[/tex].
The final graph should show open circles at [tex]\( -4 \)[/tex] and [tex]\( 6 \)[/tex] with shading to the left of [tex]\( -4 \)[/tex] and to the right of [tex]\( 6 \)[/tex].
Solution in interval notation:
[tex]\[ (-\infty, -4) \cup (6, \infty) \][/tex]
This solution set shows where the inequality [tex]\(\frac{x-6}{x+4} > 0\)[/tex] holds true.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.