Join IDNLearn.com and start exploring the answers to your most pressing questions. Ask any question and receive timely, accurate responses from our dedicated community of experts.
Sagot :
To find the pH of the resulting buffer when 500.0 mL of 0.180 M NaOH is mixed with 555 mL of 0.200 M weak acid (with [tex]\( K_{\text{a}} = 7.22 \times 10^{-5} \)[/tex]), we follow these steps:
1. Convert Volumes to Liters:
- Volume of NaOH: [tex]\( 500.0 \, \text{mL} = 0.500 \, \text{L} \)[/tex]
- Volume of Weak Acid (HA): [tex]\( 555 \, \text{mL} = 0.555 \, \text{L} \)[/tex]
2. Calculate Initial Moles:
- Moles of NaOH ([tex]\( \text{OH}^- \)[/tex]): [tex]\( 0.500 \, \text{L} \times 0.180 \, \text{M} = 0.090 \, \text{moles} \)[/tex]
- Moles of Weak Acid ([tex]\( \text{HA} \)[/tex]): [tex]\( 0.555 \, \text{L} \times 0.200 \, \text{M} = 0.1110 \, \text{moles} \)[/tex]
3. Reaction Stoichiometry:
[tex]\[ \text{HA} (aq) + \text{OH}^- (aq) \rightarrow \text{H}_2\text{O} (l) + \text{A}^- (aq) \][/tex]
- NaOH completely dissociates and reacts with the weak acid.
- Moles of conjugate base ([tex]\( \text{A}^- \)[/tex]) formed is equal to the moles of [tex]\( \text{OH}^- \)[/tex], which is [tex]\( 0.090 \, \text{moles} \)[/tex].
- Moles of HA remaining: [tex]\( 0.1110 \, \text{moles} - 0.090 \, \text{moles} = 0.0210 \, \text{moles} \)[/tex]
4. Total Volume of the Solution:
[tex]\[ 0.500 \, \text{L} + 0.555 \, \text{L} = 1.055 \, \text{L} \][/tex]
5. Concentrations in the Final Solution:
- Concentration of [tex]\( \text{HA} \)[/tex]: [tex]\( \frac{0.0210 \, \text{moles}}{1.055 \, \text{L}} = 0.0199 \, \text{M} \)[/tex]
- Concentration of [tex]\( \text{A}^- \)[/tex]: [tex]\( \frac{0.090 \, \text{moles}}{1.055 \, \text{L}} = 0.0853 \, \text{M} \)[/tex]
6. Calculate [tex]\( \text{pK}_\text{a} \)[/tex]:
[tex]\[ \text{pK}_\text{a} = -\log_{10}(K_\text{a}) = -\log_{10}(7.22 \times 10^{-5}) = 4.14 \][/tex]
7. Use the Henderson-Hasselbalch Equation:
[tex]\[ \text{pH} = \text{pK}_\text{a} + \log_{10} \left( \frac{[\text{A}^-]}{[\text{HA}]} \right) \][/tex]
Substitute the values:
[tex]\[ \text{pH} = 4.14 + \log_{10} \left( \frac{0.0853}{0.0199} \right) \][/tex]
8. Calculate the pH:
[tex]\[ \log_{10} \left( \frac{0.0853}{0.0199} \right) = \log_{10}(4.29) = 0.633 \][/tex]
[tex]\[ \text{pH} = 4.14 + 0.633 = 4.773 \][/tex]
Thus, the pH of the resulting buffer is [tex]\(\boxed{4.77}\)[/tex].
1. Convert Volumes to Liters:
- Volume of NaOH: [tex]\( 500.0 \, \text{mL} = 0.500 \, \text{L} \)[/tex]
- Volume of Weak Acid (HA): [tex]\( 555 \, \text{mL} = 0.555 \, \text{L} \)[/tex]
2. Calculate Initial Moles:
- Moles of NaOH ([tex]\( \text{OH}^- \)[/tex]): [tex]\( 0.500 \, \text{L} \times 0.180 \, \text{M} = 0.090 \, \text{moles} \)[/tex]
- Moles of Weak Acid ([tex]\( \text{HA} \)[/tex]): [tex]\( 0.555 \, \text{L} \times 0.200 \, \text{M} = 0.1110 \, \text{moles} \)[/tex]
3. Reaction Stoichiometry:
[tex]\[ \text{HA} (aq) + \text{OH}^- (aq) \rightarrow \text{H}_2\text{O} (l) + \text{A}^- (aq) \][/tex]
- NaOH completely dissociates and reacts with the weak acid.
- Moles of conjugate base ([tex]\( \text{A}^- \)[/tex]) formed is equal to the moles of [tex]\( \text{OH}^- \)[/tex], which is [tex]\( 0.090 \, \text{moles} \)[/tex].
- Moles of HA remaining: [tex]\( 0.1110 \, \text{moles} - 0.090 \, \text{moles} = 0.0210 \, \text{moles} \)[/tex]
4. Total Volume of the Solution:
[tex]\[ 0.500 \, \text{L} + 0.555 \, \text{L} = 1.055 \, \text{L} \][/tex]
5. Concentrations in the Final Solution:
- Concentration of [tex]\( \text{HA} \)[/tex]: [tex]\( \frac{0.0210 \, \text{moles}}{1.055 \, \text{L}} = 0.0199 \, \text{M} \)[/tex]
- Concentration of [tex]\( \text{A}^- \)[/tex]: [tex]\( \frac{0.090 \, \text{moles}}{1.055 \, \text{L}} = 0.0853 \, \text{M} \)[/tex]
6. Calculate [tex]\( \text{pK}_\text{a} \)[/tex]:
[tex]\[ \text{pK}_\text{a} = -\log_{10}(K_\text{a}) = -\log_{10}(7.22 \times 10^{-5}) = 4.14 \][/tex]
7. Use the Henderson-Hasselbalch Equation:
[tex]\[ \text{pH} = \text{pK}_\text{a} + \log_{10} \left( \frac{[\text{A}^-]}{[\text{HA}]} \right) \][/tex]
Substitute the values:
[tex]\[ \text{pH} = 4.14 + \log_{10} \left( \frac{0.0853}{0.0199} \right) \][/tex]
8. Calculate the pH:
[tex]\[ \log_{10} \left( \frac{0.0853}{0.0199} \right) = \log_{10}(4.29) = 0.633 \][/tex]
[tex]\[ \text{pH} = 4.14 + 0.633 = 4.773 \][/tex]
Thus, the pH of the resulting buffer is [tex]\(\boxed{4.77}\)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.