Join the IDNLearn.com community and start getting the answers you need today. Discover detailed and accurate answers to your questions from our knowledgeable and dedicated community members.
Sagot :
To determine the frequency of an electromagnetic wave given its energy, we can use the relationship between energy (E) and frequency (f) defined by Planck's equation:
[tex]\[ E = h \cdot f \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the wave.
- [tex]\( h \)[/tex] is Planck's constant, which is approximately [tex]\( 6.62607015 \times 10^{-34} \)[/tex] J·s.
- [tex]\( f \)[/tex] is the frequency of the wave.
We need to find the frequency [tex]\( f \)[/tex]. Rearranging the formula to solve for [tex]\( f \)[/tex] gives us:
[tex]\[ f = \frac{E}{h} \][/tex]
Given:
[tex]\[ E = 5.0 \times 10^{-20} \, \text{J} \][/tex]
[tex]\[ h = 6.62607015 \times 10^{-34} \, \text{J·s} \][/tex]
Substitute the given values into the rearranged formula:
[tex]\[ f = \frac{5.0 \times 10^{-20}}{6.62607015 \times 10^{-34}} \][/tex]
This calculation results in:
[tex]\[ f \approx 75459508982107.6 \, \text{Hz} \][/tex]
Now, we compare this result with the given options:
A. [tex]\( 3.98 \times 10^{-6} \, \text{Hz} \)[/tex]
B. [tex]\( 5.22 \times 10^5 \, \text{Hz} \)[/tex]
C. [tex]\( 1.67 \times 10^{-28} \, \text{Hz} \)[/tex]
D. [tex]\( 7.55 \times 10^{13} \, \text{Hz} \)[/tex]
The calculated frequency [tex]\( 75459508982107.6 \, \text{Hz} \)[/tex] is equivalent to [tex]\( 7.55 \times 10^{13} \, \text{Hz} \)[/tex], which corresponds to option D.
Therefore, the correct answer is:
[tex]\[ \boxed{7.55 \times 10^{13} \, \text{Hz}} \][/tex]
- Option D
[tex]\[ E = h \cdot f \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the wave.
- [tex]\( h \)[/tex] is Planck's constant, which is approximately [tex]\( 6.62607015 \times 10^{-34} \)[/tex] J·s.
- [tex]\( f \)[/tex] is the frequency of the wave.
We need to find the frequency [tex]\( f \)[/tex]. Rearranging the formula to solve for [tex]\( f \)[/tex] gives us:
[tex]\[ f = \frac{E}{h} \][/tex]
Given:
[tex]\[ E = 5.0 \times 10^{-20} \, \text{J} \][/tex]
[tex]\[ h = 6.62607015 \times 10^{-34} \, \text{J·s} \][/tex]
Substitute the given values into the rearranged formula:
[tex]\[ f = \frac{5.0 \times 10^{-20}}{6.62607015 \times 10^{-34}} \][/tex]
This calculation results in:
[tex]\[ f \approx 75459508982107.6 \, \text{Hz} \][/tex]
Now, we compare this result with the given options:
A. [tex]\( 3.98 \times 10^{-6} \, \text{Hz} \)[/tex]
B. [tex]\( 5.22 \times 10^5 \, \text{Hz} \)[/tex]
C. [tex]\( 1.67 \times 10^{-28} \, \text{Hz} \)[/tex]
D. [tex]\( 7.55 \times 10^{13} \, \text{Hz} \)[/tex]
The calculated frequency [tex]\( 75459508982107.6 \, \text{Hz} \)[/tex] is equivalent to [tex]\( 7.55 \times 10^{13} \, \text{Hz} \)[/tex], which corresponds to option D.
Therefore, the correct answer is:
[tex]\[ \boxed{7.55 \times 10^{13} \, \text{Hz}} \][/tex]
- Option D
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.