Get the answers you've been looking for with the help of IDNLearn.com's expert community. Join our interactive Q&A platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
To calculate the standard Gibbs free energy change (ΔrG⁰) and the equilibrium constant (log Kc) for the given cell reaction, we follow these steps:
### Step 1: Calculate ΔrG⁰
The standard Gibbs free energy change ΔrG⁰ for the cell reaction can be calculated using the following relationship:
[tex]\[ \Delta_{ r} G ^0 = -nFE_{ \text{cell} } \][/tex]
where:
- [tex]\( n \)[/tex] is the number of moles of electrons transferred in the reaction.
- [tex]\( F \)[/tex] is the Faraday constant (96500 C mol⁻¹).
- [tex]\( E_{\text{cell}} \)[/tex] is the standard cell potential in volts (1.10 V).
Let's plug in the given values:
- [tex]\( n = 2 \)[/tex] (as an example value)
- [tex]\( F = 96500 \)[/tex] C mol⁻¹
- [tex]\( E_{\text{cell}} = 1.10 \)[/tex] V
Thus,
[tex]\[ \Delta_{ r} G ^0 = - (2) (96500) (1.10) \, \text{J} \][/tex]
Calculating the value, we get:
[tex]\[ \Delta_{ r} G ^0 = -212300.00000000003 \, \text{J} \][/tex]
### Step 2: Calculate log Kc
The equilibrium constant Kc can be related to the standard cell potential through the following formula:
[tex]\[ \log K_{ c } = \frac{n FE_{ \text{cell} }}{RT \ln 10 } \][/tex]
However, for simplicity, we can directly compute the natural logarithm and convert it to log base 10:
[tex]\[ \log K_{ c } = \frac{n FE_{ \text{cell} }}{RT} \][/tex]
where:
- [tex]\( R \)[/tex] is the gas constant (8.314 J K⁻¹ mol⁻¹).
- [tex]\( T \)[/tex] is the temperature in Kelvin (298 K).
Using the same values:
- [tex]\( n = 2 \)[/tex]
- [tex]\( F = 96500 \)[/tex] C mol⁻¹
- [tex]\( E_{\text{cell}} = 1.10 \)[/tex] V
- [tex]\( R = 8.314 \)[/tex] J K⁻¹ mol⁻¹
- [tex]\( T = 298 \)[/tex] K
Let's plug in these values:
[tex]\[ \log K_{ c } = \frac{(2)(96500)(1.10)}{(8.314)(298)} \][/tex]
Calculating the value, we get:
[tex]\[ \log K_{ c } = 85.6887307412257 \][/tex]
### Conclusion
Thus, the calculated values are:
- [tex]\(\Delta_{ r} G ^0 = -212300.00000000003 \, \text{J} \)[/tex]
- [tex]\(\log K_{ c } = 85.6887307412257\)[/tex]
These are the standard Gibbs free energy change and the logarithm of the equilibrium constant for the cell reaction given the provided parameters.
### Step 1: Calculate ΔrG⁰
The standard Gibbs free energy change ΔrG⁰ for the cell reaction can be calculated using the following relationship:
[tex]\[ \Delta_{ r} G ^0 = -nFE_{ \text{cell} } \][/tex]
where:
- [tex]\( n \)[/tex] is the number of moles of electrons transferred in the reaction.
- [tex]\( F \)[/tex] is the Faraday constant (96500 C mol⁻¹).
- [tex]\( E_{\text{cell}} \)[/tex] is the standard cell potential in volts (1.10 V).
Let's plug in the given values:
- [tex]\( n = 2 \)[/tex] (as an example value)
- [tex]\( F = 96500 \)[/tex] C mol⁻¹
- [tex]\( E_{\text{cell}} = 1.10 \)[/tex] V
Thus,
[tex]\[ \Delta_{ r} G ^0 = - (2) (96500) (1.10) \, \text{J} \][/tex]
Calculating the value, we get:
[tex]\[ \Delta_{ r} G ^0 = -212300.00000000003 \, \text{J} \][/tex]
### Step 2: Calculate log Kc
The equilibrium constant Kc can be related to the standard cell potential through the following formula:
[tex]\[ \log K_{ c } = \frac{n FE_{ \text{cell} }}{RT \ln 10 } \][/tex]
However, for simplicity, we can directly compute the natural logarithm and convert it to log base 10:
[tex]\[ \log K_{ c } = \frac{n FE_{ \text{cell} }}{RT} \][/tex]
where:
- [tex]\( R \)[/tex] is the gas constant (8.314 J K⁻¹ mol⁻¹).
- [tex]\( T \)[/tex] is the temperature in Kelvin (298 K).
Using the same values:
- [tex]\( n = 2 \)[/tex]
- [tex]\( F = 96500 \)[/tex] C mol⁻¹
- [tex]\( E_{\text{cell}} = 1.10 \)[/tex] V
- [tex]\( R = 8.314 \)[/tex] J K⁻¹ mol⁻¹
- [tex]\( T = 298 \)[/tex] K
Let's plug in these values:
[tex]\[ \log K_{ c } = \frac{(2)(96500)(1.10)}{(8.314)(298)} \][/tex]
Calculating the value, we get:
[tex]\[ \log K_{ c } = 85.6887307412257 \][/tex]
### Conclusion
Thus, the calculated values are:
- [tex]\(\Delta_{ r} G ^0 = -212300.00000000003 \, \text{J} \)[/tex]
- [tex]\(\log K_{ c } = 85.6887307412257\)[/tex]
These are the standard Gibbs free energy change and the logarithm of the equilibrium constant for the cell reaction given the provided parameters.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.