Explore a vast range of topics and get informed answers at IDNLearn.com. Our platform offers reliable and detailed answers, ensuring you have the information you need.
Sagot :
To calculate the standard Gibbs free energy change (ΔrG⁰) and the equilibrium constant (log Kc) for the given cell reaction, we follow these steps:
### Step 1: Calculate ΔrG⁰
The standard Gibbs free energy change ΔrG⁰ for the cell reaction can be calculated using the following relationship:
[tex]\[ \Delta_{ r} G ^0 = -nFE_{ \text{cell} } \][/tex]
where:
- [tex]\( n \)[/tex] is the number of moles of electrons transferred in the reaction.
- [tex]\( F \)[/tex] is the Faraday constant (96500 C mol⁻¹).
- [tex]\( E_{\text{cell}} \)[/tex] is the standard cell potential in volts (1.10 V).
Let's plug in the given values:
- [tex]\( n = 2 \)[/tex] (as an example value)
- [tex]\( F = 96500 \)[/tex] C mol⁻¹
- [tex]\( E_{\text{cell}} = 1.10 \)[/tex] V
Thus,
[tex]\[ \Delta_{ r} G ^0 = - (2) (96500) (1.10) \, \text{J} \][/tex]
Calculating the value, we get:
[tex]\[ \Delta_{ r} G ^0 = -212300.00000000003 \, \text{J} \][/tex]
### Step 2: Calculate log Kc
The equilibrium constant Kc can be related to the standard cell potential through the following formula:
[tex]\[ \log K_{ c } = \frac{n FE_{ \text{cell} }}{RT \ln 10 } \][/tex]
However, for simplicity, we can directly compute the natural logarithm and convert it to log base 10:
[tex]\[ \log K_{ c } = \frac{n FE_{ \text{cell} }}{RT} \][/tex]
where:
- [tex]\( R \)[/tex] is the gas constant (8.314 J K⁻¹ mol⁻¹).
- [tex]\( T \)[/tex] is the temperature in Kelvin (298 K).
Using the same values:
- [tex]\( n = 2 \)[/tex]
- [tex]\( F = 96500 \)[/tex] C mol⁻¹
- [tex]\( E_{\text{cell}} = 1.10 \)[/tex] V
- [tex]\( R = 8.314 \)[/tex] J K⁻¹ mol⁻¹
- [tex]\( T = 298 \)[/tex] K
Let's plug in these values:
[tex]\[ \log K_{ c } = \frac{(2)(96500)(1.10)}{(8.314)(298)} \][/tex]
Calculating the value, we get:
[tex]\[ \log K_{ c } = 85.6887307412257 \][/tex]
### Conclusion
Thus, the calculated values are:
- [tex]\(\Delta_{ r} G ^0 = -212300.00000000003 \, \text{J} \)[/tex]
- [tex]\(\log K_{ c } = 85.6887307412257\)[/tex]
These are the standard Gibbs free energy change and the logarithm of the equilibrium constant for the cell reaction given the provided parameters.
### Step 1: Calculate ΔrG⁰
The standard Gibbs free energy change ΔrG⁰ for the cell reaction can be calculated using the following relationship:
[tex]\[ \Delta_{ r} G ^0 = -nFE_{ \text{cell} } \][/tex]
where:
- [tex]\( n \)[/tex] is the number of moles of electrons transferred in the reaction.
- [tex]\( F \)[/tex] is the Faraday constant (96500 C mol⁻¹).
- [tex]\( E_{\text{cell}} \)[/tex] is the standard cell potential in volts (1.10 V).
Let's plug in the given values:
- [tex]\( n = 2 \)[/tex] (as an example value)
- [tex]\( F = 96500 \)[/tex] C mol⁻¹
- [tex]\( E_{\text{cell}} = 1.10 \)[/tex] V
Thus,
[tex]\[ \Delta_{ r} G ^0 = - (2) (96500) (1.10) \, \text{J} \][/tex]
Calculating the value, we get:
[tex]\[ \Delta_{ r} G ^0 = -212300.00000000003 \, \text{J} \][/tex]
### Step 2: Calculate log Kc
The equilibrium constant Kc can be related to the standard cell potential through the following formula:
[tex]\[ \log K_{ c } = \frac{n FE_{ \text{cell} }}{RT \ln 10 } \][/tex]
However, for simplicity, we can directly compute the natural logarithm and convert it to log base 10:
[tex]\[ \log K_{ c } = \frac{n FE_{ \text{cell} }}{RT} \][/tex]
where:
- [tex]\( R \)[/tex] is the gas constant (8.314 J K⁻¹ mol⁻¹).
- [tex]\( T \)[/tex] is the temperature in Kelvin (298 K).
Using the same values:
- [tex]\( n = 2 \)[/tex]
- [tex]\( F = 96500 \)[/tex] C mol⁻¹
- [tex]\( E_{\text{cell}} = 1.10 \)[/tex] V
- [tex]\( R = 8.314 \)[/tex] J K⁻¹ mol⁻¹
- [tex]\( T = 298 \)[/tex] K
Let's plug in these values:
[tex]\[ \log K_{ c } = \frac{(2)(96500)(1.10)}{(8.314)(298)} \][/tex]
Calculating the value, we get:
[tex]\[ \log K_{ c } = 85.6887307412257 \][/tex]
### Conclusion
Thus, the calculated values are:
- [tex]\(\Delta_{ r} G ^0 = -212300.00000000003 \, \text{J} \)[/tex]
- [tex]\(\log K_{ c } = 85.6887307412257\)[/tex]
These are the standard Gibbs free energy change and the logarithm of the equilibrium constant for the cell reaction given the provided parameters.
We are delighted to have you as part of our community. Keep asking, answering, and sharing your insights. Together, we can create a valuable knowledge resource. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.