Find the best solutions to your problems with the help of IDNLearn.com's experts. Find in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
Sure, let's go through the problem step-by-step to find the decay constant and the activity rate.
### Step 1: Understand the given values
- Number of atoms ([tex]\( N \)[/tex]) = [tex]\( 10^{12} \)[/tex]
- Half-life ([tex]\( t_{1/2} \)[/tex]) = 15 days
### Step 2: Calculate the decay constant
The decay constant ([tex]\( \lambda \)[/tex]) is related to the half-life by the formula:
[tex]\[ \lambda = \frac{\ln(2)}{t_{1/2}} \][/tex]
Where:
- [tex]\( \ln(2) \)[/tex] is the natural logarithm of 2 (approximately 0.693).
- [tex]\( t_{1/2} \)[/tex] is the half-life.
So,
[tex]\[ \lambda = \frac{0.693}{15} \approx 0.046209812037329684 \, \text{days}^{-1} \][/tex]
### Step 3: Calculate the activity rate
The activity rate ([tex]\( A \)[/tex]) is given by the formula:
[tex]\[ A = \lambda \cdot N \][/tex]
Where:
- [tex]\( \lambda \)[/tex] is the decay constant.
- [tex]\( N \)[/tex] is the number of atoms.
Thus,
[tex]\[ A = 0.046209812037329684 \times 10^{12} \approx 46209812037.32968 \, \text{decays per day} \][/tex]
### Conclusion
- The decay constant ([tex]\( \lambda \)[/tex]) is approximately [tex]\( 0.046209812037329684 \, \text{days}^{-1} \)[/tex].
- The activity rate ([tex]\( A \)[/tex]) is approximately [tex]\( 46209812037.32968 \, \text{decays per day} \)[/tex].
So, the material with [tex]\( 10^{12} \)[/tex] atoms and a half-life of 15 days has an activity rate of around [tex]\( 46209812037.32968 \)[/tex] decays per day.
### Step 1: Understand the given values
- Number of atoms ([tex]\( N \)[/tex]) = [tex]\( 10^{12} \)[/tex]
- Half-life ([tex]\( t_{1/2} \)[/tex]) = 15 days
### Step 2: Calculate the decay constant
The decay constant ([tex]\( \lambda \)[/tex]) is related to the half-life by the formula:
[tex]\[ \lambda = \frac{\ln(2)}{t_{1/2}} \][/tex]
Where:
- [tex]\( \ln(2) \)[/tex] is the natural logarithm of 2 (approximately 0.693).
- [tex]\( t_{1/2} \)[/tex] is the half-life.
So,
[tex]\[ \lambda = \frac{0.693}{15} \approx 0.046209812037329684 \, \text{days}^{-1} \][/tex]
### Step 3: Calculate the activity rate
The activity rate ([tex]\( A \)[/tex]) is given by the formula:
[tex]\[ A = \lambda \cdot N \][/tex]
Where:
- [tex]\( \lambda \)[/tex] is the decay constant.
- [tex]\( N \)[/tex] is the number of atoms.
Thus,
[tex]\[ A = 0.046209812037329684 \times 10^{12} \approx 46209812037.32968 \, \text{decays per day} \][/tex]
### Conclusion
- The decay constant ([tex]\( \lambda \)[/tex]) is approximately [tex]\( 0.046209812037329684 \, \text{days}^{-1} \)[/tex].
- The activity rate ([tex]\( A \)[/tex]) is approximately [tex]\( 46209812037.32968 \, \text{decays per day} \)[/tex].
So, the material with [tex]\( 10^{12} \)[/tex] atoms and a half-life of 15 days has an activity rate of around [tex]\( 46209812037.32968 \)[/tex] decays per day.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.