IDNLearn.com: Your one-stop destination for reliable answers to diverse questions. Our experts provide prompt and accurate answers to help you make informed decisions on any topic.
Sagot :
Sure, let's go through the problem step-by-step to find the decay constant and the activity rate.
### Step 1: Understand the given values
- Number of atoms ([tex]\( N \)[/tex]) = [tex]\( 10^{12} \)[/tex]
- Half-life ([tex]\( t_{1/2} \)[/tex]) = 15 days
### Step 2: Calculate the decay constant
The decay constant ([tex]\( \lambda \)[/tex]) is related to the half-life by the formula:
[tex]\[ \lambda = \frac{\ln(2)}{t_{1/2}} \][/tex]
Where:
- [tex]\( \ln(2) \)[/tex] is the natural logarithm of 2 (approximately 0.693).
- [tex]\( t_{1/2} \)[/tex] is the half-life.
So,
[tex]\[ \lambda = \frac{0.693}{15} \approx 0.046209812037329684 \, \text{days}^{-1} \][/tex]
### Step 3: Calculate the activity rate
The activity rate ([tex]\( A \)[/tex]) is given by the formula:
[tex]\[ A = \lambda \cdot N \][/tex]
Where:
- [tex]\( \lambda \)[/tex] is the decay constant.
- [tex]\( N \)[/tex] is the number of atoms.
Thus,
[tex]\[ A = 0.046209812037329684 \times 10^{12} \approx 46209812037.32968 \, \text{decays per day} \][/tex]
### Conclusion
- The decay constant ([tex]\( \lambda \)[/tex]) is approximately [tex]\( 0.046209812037329684 \, \text{days}^{-1} \)[/tex].
- The activity rate ([tex]\( A \)[/tex]) is approximately [tex]\( 46209812037.32968 \, \text{decays per day} \)[/tex].
So, the material with [tex]\( 10^{12} \)[/tex] atoms and a half-life of 15 days has an activity rate of around [tex]\( 46209812037.32968 \)[/tex] decays per day.
### Step 1: Understand the given values
- Number of atoms ([tex]\( N \)[/tex]) = [tex]\( 10^{12} \)[/tex]
- Half-life ([tex]\( t_{1/2} \)[/tex]) = 15 days
### Step 2: Calculate the decay constant
The decay constant ([tex]\( \lambda \)[/tex]) is related to the half-life by the formula:
[tex]\[ \lambda = \frac{\ln(2)}{t_{1/2}} \][/tex]
Where:
- [tex]\( \ln(2) \)[/tex] is the natural logarithm of 2 (approximately 0.693).
- [tex]\( t_{1/2} \)[/tex] is the half-life.
So,
[tex]\[ \lambda = \frac{0.693}{15} \approx 0.046209812037329684 \, \text{days}^{-1} \][/tex]
### Step 3: Calculate the activity rate
The activity rate ([tex]\( A \)[/tex]) is given by the formula:
[tex]\[ A = \lambda \cdot N \][/tex]
Where:
- [tex]\( \lambda \)[/tex] is the decay constant.
- [tex]\( N \)[/tex] is the number of atoms.
Thus,
[tex]\[ A = 0.046209812037329684 \times 10^{12} \approx 46209812037.32968 \, \text{decays per day} \][/tex]
### Conclusion
- The decay constant ([tex]\( \lambda \)[/tex]) is approximately [tex]\( 0.046209812037329684 \, \text{days}^{-1} \)[/tex].
- The activity rate ([tex]\( A \)[/tex]) is approximately [tex]\( 46209812037.32968 \, \text{decays per day} \)[/tex].
So, the material with [tex]\( 10^{12} \)[/tex] atoms and a half-life of 15 days has an activity rate of around [tex]\( 46209812037.32968 \)[/tex] decays per day.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.