IDNLearn.com: Your one-stop destination for reliable answers to diverse questions. Join our interactive community and access reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
Sure, let's work through this problem step-by-step to determine the value of the heat transfer coefficient [tex]\( h \)[/tex].
Given:
- Diameter of the cylinder, [tex]\( D = 30 \)[/tex] meters
- Air temperature, [tex]\( T_{\text{air}} = 23^\circ \text{C} \)[/tex]
- Surface temperature of the cylinder, [tex]\( T_{\text{surface}} = 90^\circ \text{C} \)[/tex]
- Heat output, [tex]\( Q = 40 \)[/tex] watts per meter
First, we need to determine the temperature difference between the surface of the cylinder and the air:
[tex]\[ \Delta T = T_{\text{surface}} - T_{\text{air}} \][/tex]
[tex]\[ \Delta T = 90^\circ \text{C} - 23^\circ \text{C} \][/tex]
[tex]\[ \Delta T = 67^\circ \text{C} \][/tex]
Next, we calculate the surface area of the curved part of the cylinder per meter of its length. The cylinder is very long, so we consider the side surface of a unit length (1 meter). The formula for the surface area of a cylinder is:
[tex]\[ A = \pi D L \][/tex]
where [tex]\( D \)[/tex] is the diameter, and [tex]\( L \)[/tex] is the length. For a unit length (1 meter):
[tex]\[ L = 1 \text{ meter} \][/tex]
Therefore,
[tex]\[ A = \pi \times 30 \text{ meters} \times 1 \text{ meter} \][/tex]
[tex]\[ A \approx 94.2478 \text{ square meters} \][/tex]
Now, we use the formula for heat transfer:
[tex]\[ Q = h \times A \times \Delta T \][/tex]
We need to isolate [tex]\( h \)[/tex]:
[tex]\[ h = \frac{Q}{A \times \Delta T} \][/tex]
Substituting the values:
[tex]\[ h = \frac{40 \text{ watts}}{94.2478 \text{ square meters} \times 67^\circ \text{C}} \][/tex]
[tex]\[ h \approx 0.00633452509818489 \text{ watts per square meter per degree Celsius} \][/tex]
Thus, the heat transfer coefficient [tex]\( h \)[/tex] is approximately [tex]\( 0.0063 \ \text{W/m}^2 \cdot ^\circ C \)[/tex].
Given:
- Diameter of the cylinder, [tex]\( D = 30 \)[/tex] meters
- Air temperature, [tex]\( T_{\text{air}} = 23^\circ \text{C} \)[/tex]
- Surface temperature of the cylinder, [tex]\( T_{\text{surface}} = 90^\circ \text{C} \)[/tex]
- Heat output, [tex]\( Q = 40 \)[/tex] watts per meter
First, we need to determine the temperature difference between the surface of the cylinder and the air:
[tex]\[ \Delta T = T_{\text{surface}} - T_{\text{air}} \][/tex]
[tex]\[ \Delta T = 90^\circ \text{C} - 23^\circ \text{C} \][/tex]
[tex]\[ \Delta T = 67^\circ \text{C} \][/tex]
Next, we calculate the surface area of the curved part of the cylinder per meter of its length. The cylinder is very long, so we consider the side surface of a unit length (1 meter). The formula for the surface area of a cylinder is:
[tex]\[ A = \pi D L \][/tex]
where [tex]\( D \)[/tex] is the diameter, and [tex]\( L \)[/tex] is the length. For a unit length (1 meter):
[tex]\[ L = 1 \text{ meter} \][/tex]
Therefore,
[tex]\[ A = \pi \times 30 \text{ meters} \times 1 \text{ meter} \][/tex]
[tex]\[ A \approx 94.2478 \text{ square meters} \][/tex]
Now, we use the formula for heat transfer:
[tex]\[ Q = h \times A \times \Delta T \][/tex]
We need to isolate [tex]\( h \)[/tex]:
[tex]\[ h = \frac{Q}{A \times \Delta T} \][/tex]
Substituting the values:
[tex]\[ h = \frac{40 \text{ watts}}{94.2478 \text{ square meters} \times 67^\circ \text{C}} \][/tex]
[tex]\[ h \approx 0.00633452509818489 \text{ watts per square meter per degree Celsius} \][/tex]
Thus, the heat transfer coefficient [tex]\( h \)[/tex] is approximately [tex]\( 0.0063 \ \text{W/m}^2 \cdot ^\circ C \)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.