Find the best solutions to your problems with the help of IDNLearn.com's experts. Our experts are available to provide accurate, comprehensive answers to help you make informed decisions about any topic or issue you encounter.
Sagot :
Certainly! Let's go through this step-by-step.
1. Understanding the Problem:
- Original mass of the planet is [tex]\( M \)[/tex].
- The mass of the planet is reduced to [tex]\(\frac{1}{8}\)[/tex] of the original mass.
- Density of the planet remains constant.
- We need to determine the new acceleration due to gravity ([tex]\(g'\)[/tex]) of the planet.
2. Key Formulas:
- Acceleration due to gravity [tex]\( g \)[/tex] on a planet is given by:
[tex]\[ g = \frac{GM}{R^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, [tex]\( M \)[/tex] is the mass of the planet, and [tex]\( R \)[/tex] is the radius of the planet.
- Since density ([tex]\( \rho \)[/tex]) remains constant:
[tex]\[ \rho = \frac{M}{V} \quad \text{and} \quad V = \frac{4}{3} \pi R^3 \][/tex]
3. Mass Reduction and Density Constant:
- New mass, [tex]\( M' = \frac{M}{8} \)[/tex].
- Density remains constant, hence:
[tex]\[ \rho = \frac{M}{\frac{4}{3} \pi R^3} = \frac{M'}{\frac{4}{3} \pi {R'}^3} \][/tex]
Since [tex]\(\rho\)[/tex] doesn't change:
[tex]\[ \frac{M}{R^3} = \frac{M'}{{R'}^3} \][/tex]
4. Relating Volumes and Radii:
- Using [tex]\( M' = \frac{M}{8} \)[/tex]:
[tex]\[ \frac{M}{{R}^3} = \frac{\frac{M}{8}}{R'^3} \][/tex]
[tex]\[ \frac{M}{{R}^3} = \frac{M}{8R'^3} \][/tex]
[tex]\[ {R'^3} = \frac{R^3}{8} \][/tex]
[tex]\[ R' = \left(\frac{R^3}{8}\right)^{\frac{1}{3}} = \frac{R}{2} \][/tex]
5. Calculating the New Gravity ([tex]\( g' \)[/tex]):
- Using the formula for gravity:
[tex]\[ g' = \frac{G M'}{R'^2} \][/tex]
- Substitute [tex]\( M' = \frac{M}{8} \)[/tex] and [tex]\( R' = \frac{R}{2} \)[/tex] into the gravity formula:
[tex]\[ g' = \frac{G \left(\frac{M}{8}\right)}{\left(\frac{R}{2}\right)^2} \][/tex]
[tex]\[ g' = \frac{\frac{G M}{8}}{\frac{R^2}{4}} \][/tex]
[tex]\[ g' = \frac{GM}{8} \cdot \frac{4}{R^2} \][/tex]
[tex]\[ g' = \frac{GM}{R^2} \cdot \frac{4}{8} \][/tex]
[tex]\[ g' = \frac{GM}{R^2} \cdot \frac{1}{2} \][/tex]
[tex]\[ g' = \frac{g}{2} \][/tex]
So, the new value of acceleration due to gravity of the planet when its mass is reduced to [tex]\(\frac{1}{8}\)[/tex] without change in density is:
[tex]\[ g' = \frac{g}{2} \][/tex]
Thus, the correct answer is:
b) [tex]\(\frac{g}{2}\)[/tex]
1. Understanding the Problem:
- Original mass of the planet is [tex]\( M \)[/tex].
- The mass of the planet is reduced to [tex]\(\frac{1}{8}\)[/tex] of the original mass.
- Density of the planet remains constant.
- We need to determine the new acceleration due to gravity ([tex]\(g'\)[/tex]) of the planet.
2. Key Formulas:
- Acceleration due to gravity [tex]\( g \)[/tex] on a planet is given by:
[tex]\[ g = \frac{GM}{R^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, [tex]\( M \)[/tex] is the mass of the planet, and [tex]\( R \)[/tex] is the radius of the planet.
- Since density ([tex]\( \rho \)[/tex]) remains constant:
[tex]\[ \rho = \frac{M}{V} \quad \text{and} \quad V = \frac{4}{3} \pi R^3 \][/tex]
3. Mass Reduction and Density Constant:
- New mass, [tex]\( M' = \frac{M}{8} \)[/tex].
- Density remains constant, hence:
[tex]\[ \rho = \frac{M}{\frac{4}{3} \pi R^3} = \frac{M'}{\frac{4}{3} \pi {R'}^3} \][/tex]
Since [tex]\(\rho\)[/tex] doesn't change:
[tex]\[ \frac{M}{R^3} = \frac{M'}{{R'}^3} \][/tex]
4. Relating Volumes and Radii:
- Using [tex]\( M' = \frac{M}{8} \)[/tex]:
[tex]\[ \frac{M}{{R}^3} = \frac{\frac{M}{8}}{R'^3} \][/tex]
[tex]\[ \frac{M}{{R}^3} = \frac{M}{8R'^3} \][/tex]
[tex]\[ {R'^3} = \frac{R^3}{8} \][/tex]
[tex]\[ R' = \left(\frac{R^3}{8}\right)^{\frac{1}{3}} = \frac{R}{2} \][/tex]
5. Calculating the New Gravity ([tex]\( g' \)[/tex]):
- Using the formula for gravity:
[tex]\[ g' = \frac{G M'}{R'^2} \][/tex]
- Substitute [tex]\( M' = \frac{M}{8} \)[/tex] and [tex]\( R' = \frac{R}{2} \)[/tex] into the gravity formula:
[tex]\[ g' = \frac{G \left(\frac{M}{8}\right)}{\left(\frac{R}{2}\right)^2} \][/tex]
[tex]\[ g' = \frac{\frac{G M}{8}}{\frac{R^2}{4}} \][/tex]
[tex]\[ g' = \frac{GM}{8} \cdot \frac{4}{R^2} \][/tex]
[tex]\[ g' = \frac{GM}{R^2} \cdot \frac{4}{8} \][/tex]
[tex]\[ g' = \frac{GM}{R^2} \cdot \frac{1}{2} \][/tex]
[tex]\[ g' = \frac{g}{2} \][/tex]
So, the new value of acceleration due to gravity of the planet when its mass is reduced to [tex]\(\frac{1}{8}\)[/tex] without change in density is:
[tex]\[ g' = \frac{g}{2} \][/tex]
Thus, the correct answer is:
b) [tex]\(\frac{g}{2}\)[/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.