Expand your horizons with the diverse and informative answers found on IDNLearn.com. Our platform provides detailed and accurate responses from experts, helping you navigate any topic with confidence.

Select the correct answer from each drop-down menu.

Solve this system of equations using a matrix inverse.
[tex]\[
\begin{array}{l}
x + y = 10 \\
2x - z = 9 \\
y - 3z = -5
\end{array}
\][/tex]

If [tex]\( A \)[/tex] is the coefficient matrix of the above system of equations and [tex]\( A^{-1} = \frac{1}{7} \left[ \begin{array}{l} R_1 \\ R_2 \\ R_3 \end{array} \right] \)[/tex], then the elements of [tex]\( R_1 \)[/tex] are [tex]\( 1, 3, -1 \)[/tex], the elements of [tex]\( R_2 \)[/tex] are [tex]\( 6, -3, 1 \)[/tex], and the elements of [tex]\( R_3 \)[/tex] are [tex]\( 2, -1, -2 \)[/tex]. The solution of this system is [tex]\( (x, y, z) = \square \)[/tex].


Sagot :

Let's consider the given system of linear equations:

[tex]\[ \begin{array}{l} x + y = 10 \\ 2x - z = 9 \\ y - 3z = -5 \end{array} \][/tex]

We can represent this system in matrix form as [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex], where:
- [tex]\( A \)[/tex] is the coefficient matrix,
- [tex]\( \mathbf{x} \)[/tex] is the vector of variables, and
- [tex]\( \mathbf{B} \)[/tex] is the constant vector.

Here, we have:

[tex]\[ A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & -1 \\ 0 & 1 & -3 \end{bmatrix} \][/tex]
[tex]\[ \mathbf{B} = \begin{bmatrix} 10 \\ 9 \\ -5 \end{bmatrix} \][/tex]

The inverse of the matrix [tex]\( A \)[/tex] is given as:

[tex]\[ A^{-1} = \frac{1}{7} \begin{bmatrix} 1 & 3 & -1 \\ 6 & -3 & 1 \\ 2 & -1 & -2 \end{bmatrix} \][/tex]

Now, to find the solution vector [tex]\( \mathbf{x} \)[/tex] which contains [tex]\((x, y, z)\)[/tex], we need to multiply the inverse of [tex]\( A \)[/tex] by the constant vector [tex]\( \mathbf{B} \)[/tex]:

[tex]\[ \mathbf{x} = A^{-1} \mathbf{B} \][/tex]
Performing the matrix multiplication:

[tex]\[ \mathbf{x} = \frac{1}{7} \begin{bmatrix} 1 & 3 & -1 \\ 6 & -3 & 1 \\ 2 & -1 & -2 \end{bmatrix} \begin{bmatrix} 10 \\ 9 \\ -5 \end{bmatrix} \][/tex]

Carrying out the multiplication step by step:

[tex]\[ \mathbf{x}_1 = \frac{1}{7} (1 \cdot 10 + 3 \cdot 9 - 1 \cdot (-5)) = \frac{1}{7} (10 + 27 + 5) = \frac{1}{7} \cdot 42 = 6 \][/tex]

[tex]\[ \mathbf{x}_2 = \frac{1}{7} (6 \cdot 10 - 3 \cdot 9 + 1 \cdot (-5)) = \frac{1}{7} (60 - 27 - 5) = \frac{1}{7} \cdot 28 = 4 \][/tex]

[tex]\[ \mathbf{x}_3 = \frac{1}{7} (2 \cdot 10 - 1 \cdot 9 - 2 \cdot (-5)) = \frac{1}{7} (20 - 9 + 10) = \frac{1}{7} \cdot 21 = 3 \][/tex]

Thus, the solution to the system of equations is:

[tex]\[ (x, y, z) = (6, 4, 3) \][/tex]

So, filling in the drop-down menus:

The solution of this system is [tex]\((x, y, z) = (6, 4, 3)\)[/tex].