IDNLearn.com is committed to providing high-quality answers to your questions. Our platform is designed to provide reliable and thorough answers to all your questions, no matter the topic.
Sagot :
Sure, let's break down the problem step-by-step to find the required distances.
### Setting Up the Problem
Given:
- The aeroplane flies from town [tex]\( X \)[/tex] to town [tex]\( Y \)[/tex] on a bearing of [tex]\( N 45^\circ E \)[/tex].
- Distance from [tex]\( X \)[/tex] to [tex]\( Y \)[/tex] is 200 km.
- Town [tex]\( Z \)[/tex] is directly east of town [tex]\( X \)[/tex].
- Y is on a line with bearing [tex]\( N 45^\circ E \)[/tex] from X, which means a 45-degree angle from the north towards the east.
First, we'll determine the coordinates of [tex]\( Y \)[/tex] relative to [tex]\( X \)[/tex]. Let's place [tex]\( X \)[/tex] at the origin [tex]\((0, 0)\)[/tex].
### Coordinates of [tex]\( Y \)[/tex]
To find the coordinates of [tex]\( Y \)[/tex], we'll use trigonometry. The distance from [tex]\( X \)[/tex] to [tex]\( Y \)[/tex] is 200 km, and the angle from the north is [tex]\( 45^\circ \)[/tex].
- [tex]\( x_Y \)[/tex] (horizontal distance) = [tex]\( 200 \times \cos(45^\circ) \)[/tex]
- [tex]\( y_Y \)[/tex] (vertical distance) = [tex]\( 200 \times \sin(45^\circ) \)[/tex]
### Coordinates Calculation
Using the trigonometric values:
- [tex]\( \cos(45^\circ) = \sin(45^\circ) = \frac{\sqrt{2}}{2} \approx 0.707 \)[/tex]
Therefore:
- [tex]\( x_Y \approx 200 \times 0.707 = 141.421 \)[/tex] km
- [tex]\( y_Y \approx 200 \times 0.707 = 141.421 \)[/tex] km
So, the coordinates of [tex]\( Y \)[/tex] are [tex]\((141.421, 141.421)\)[/tex].
### Coordinates of [tex]\( Z \)[/tex]
Since [tex]\( Z \)[/tex] is directly east of [tex]\( X \)[/tex], its y-coordinate is the same as that of [tex]\( X \)[/tex], which is 0. Thus, coordinates of [tex]\( Z \)[/tex] can be represented as [tex]\((x_Z, 0)\)[/tex].
### Distance from [tex]\( X \)[/tex] to [tex]\( Z \)[/tex]
The distance from [tex]\( X \)[/tex] to [tex]\( Z \)[/tex] is just the horizontal distance [tex]\( x_Z \)[/tex].
Given that [tex]\( x_Y = 141.421 \)[/tex] km and it represents the horizontal distance, we get:
- Distance from [tex]\( X \)[/tex] to [tex]\( Z \)[/tex] = 141.421 km
### Distance from [tex]\( Y \)[/tex] to [tex]\( Z \)[/tex]
To find the distance from [tex]\( Y \)[/tex] to [tex]\( Z \)[/tex], we'll use the distance formula:
[tex]\[ \text{Distance from } Y \text{ to } Z = \sqrt{(x_Y - x_Z)^2 + (y_Y - y_Z)^2} \][/tex]
Substituting the values we calculated:
- [tex]\( x_Y = 141.421 \)[/tex]
- [tex]\( x_Z = 141.421 \)[/tex]
- [tex]\( y_Y = 141.421 \)[/tex]
- [tex]\( y_Z = 0 \)[/tex]
[tex]\[ \text{Distance from } Y \text{ to } Z = \sqrt{(141.421 - 141.421)^2 + (141.421 - 0)^2} = \sqrt{0 + 141.421^2} = 141.421 \text{ km} \][/tex]
### Summary of Results
Therefore, the distances are:
- (a) The distance from [tex]\( X \)[/tex] to [tex]\( Z \)[/tex] is 141.421 km.
- (b) The distance from [tex]\( Y \)[/tex] to [tex]\( Z \)[/tex] is also 141.421 km.
Hence, both distances are 141.421 km, correct to three significant figures.
### Setting Up the Problem
Given:
- The aeroplane flies from town [tex]\( X \)[/tex] to town [tex]\( Y \)[/tex] on a bearing of [tex]\( N 45^\circ E \)[/tex].
- Distance from [tex]\( X \)[/tex] to [tex]\( Y \)[/tex] is 200 km.
- Town [tex]\( Z \)[/tex] is directly east of town [tex]\( X \)[/tex].
- Y is on a line with bearing [tex]\( N 45^\circ E \)[/tex] from X, which means a 45-degree angle from the north towards the east.
First, we'll determine the coordinates of [tex]\( Y \)[/tex] relative to [tex]\( X \)[/tex]. Let's place [tex]\( X \)[/tex] at the origin [tex]\((0, 0)\)[/tex].
### Coordinates of [tex]\( Y \)[/tex]
To find the coordinates of [tex]\( Y \)[/tex], we'll use trigonometry. The distance from [tex]\( X \)[/tex] to [tex]\( Y \)[/tex] is 200 km, and the angle from the north is [tex]\( 45^\circ \)[/tex].
- [tex]\( x_Y \)[/tex] (horizontal distance) = [tex]\( 200 \times \cos(45^\circ) \)[/tex]
- [tex]\( y_Y \)[/tex] (vertical distance) = [tex]\( 200 \times \sin(45^\circ) \)[/tex]
### Coordinates Calculation
Using the trigonometric values:
- [tex]\( \cos(45^\circ) = \sin(45^\circ) = \frac{\sqrt{2}}{2} \approx 0.707 \)[/tex]
Therefore:
- [tex]\( x_Y \approx 200 \times 0.707 = 141.421 \)[/tex] km
- [tex]\( y_Y \approx 200 \times 0.707 = 141.421 \)[/tex] km
So, the coordinates of [tex]\( Y \)[/tex] are [tex]\((141.421, 141.421)\)[/tex].
### Coordinates of [tex]\( Z \)[/tex]
Since [tex]\( Z \)[/tex] is directly east of [tex]\( X \)[/tex], its y-coordinate is the same as that of [tex]\( X \)[/tex], which is 0. Thus, coordinates of [tex]\( Z \)[/tex] can be represented as [tex]\((x_Z, 0)\)[/tex].
### Distance from [tex]\( X \)[/tex] to [tex]\( Z \)[/tex]
The distance from [tex]\( X \)[/tex] to [tex]\( Z \)[/tex] is just the horizontal distance [tex]\( x_Z \)[/tex].
Given that [tex]\( x_Y = 141.421 \)[/tex] km and it represents the horizontal distance, we get:
- Distance from [tex]\( X \)[/tex] to [tex]\( Z \)[/tex] = 141.421 km
### Distance from [tex]\( Y \)[/tex] to [tex]\( Z \)[/tex]
To find the distance from [tex]\( Y \)[/tex] to [tex]\( Z \)[/tex], we'll use the distance formula:
[tex]\[ \text{Distance from } Y \text{ to } Z = \sqrt{(x_Y - x_Z)^2 + (y_Y - y_Z)^2} \][/tex]
Substituting the values we calculated:
- [tex]\( x_Y = 141.421 \)[/tex]
- [tex]\( x_Z = 141.421 \)[/tex]
- [tex]\( y_Y = 141.421 \)[/tex]
- [tex]\( y_Z = 0 \)[/tex]
[tex]\[ \text{Distance from } Y \text{ to } Z = \sqrt{(141.421 - 141.421)^2 + (141.421 - 0)^2} = \sqrt{0 + 141.421^2} = 141.421 \text{ km} \][/tex]
### Summary of Results
Therefore, the distances are:
- (a) The distance from [tex]\( X \)[/tex] to [tex]\( Z \)[/tex] is 141.421 km.
- (b) The distance from [tex]\( Y \)[/tex] to [tex]\( Z \)[/tex] is also 141.421 km.
Hence, both distances are 141.421 km, correct to three significant figures.
Thank you for participating in our discussion. We value every contribution. Keep sharing knowledge and helping others find the answers they need. Let's create a dynamic and informative learning environment together. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.