Discover new knowledge and insights with IDNLearn.com's extensive Q&A platform. Discover trustworthy solutions to your questions quickly and accurately with help from our dedicated community of experts.
Sagot :
To determine the rate constant [tex]\( k \)[/tex] for a zero-order reaction, we use the integrated rate law for zero-order reactions:
[tex]\[ [A]_t = -kt + [A]_0 \][/tex]
Where:
- [tex]\([A]_t\)[/tex] is the concentration of the reactant at time [tex]\( t \)[/tex]
- [tex]\( k \)[/tex] is the rate constant
- [tex]\( t \)[/tex] is the time
- [tex]\([A]_0\)[/tex] is the initial concentration of the reactant
Given:
- Initial concentration [tex]\([A]_0\)[/tex] = 0.100 M at [tex]\( t = 110 \)[/tex] s
- Concentration [tex]\([A]_t\)[/tex] = 3.50 \times 10^{-2} \) M at [tex]\( t = 395 \)[/tex] s
We need to find the change in concentration and change in time first.
1. Calculate the change in concentration ([tex]\(\Delta [A]\)[/tex]):
[tex]\[ \Delta [A] = [A]_0 - [A]_t \][/tex]
[tex]\[ \Delta [A] = 0.100 \, \text{M} - 3.50 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ \Delta [A] = 0.100 \, \text{M} - 0.035 \, \text{M} \][/tex]
[tex]\[ \Delta [A] = 0.065 \, \text{M} \][/tex]
2. Calculate the change in time ([tex]\(\Delta t\)[/tex]):
[tex]\[ \Delta t = t_2 - t_1 \][/tex]
[tex]\[ \Delta t = 395 \, \text{s} - 110 \, \text{s} \][/tex]
[tex]\[ \Delta t = 285 \, \text{s} \][/tex]
3. Now, we use the formula rearranged for the rate constant ([tex]\( k \)[/tex]):
[tex]\[ k = \frac{\Delta [A]}{\Delta t} \][/tex]
Substitute the values:
[tex]\[ k = \frac{0.065 \, \text{M}}{285 \, \text{s}} \][/tex]
Perform the division to find [tex]\( k \)[/tex]:
[tex]\[ k \approx 0.000228 \, \text{M/s} \][/tex]
Therefore, the rate constant for the reaction is:
[tex]\[ k = 0.000228 \, \text{M} \cdot \text{s}^{-1} \][/tex]
Make sure to include the appropriate units to indicate the multiplication explicitly:
[tex]\[ k = 0.000228 \, \text{M} \cdot \text{s}^{-1} \][/tex]
So the final answer is:
[tex]\[ k = 0.000228 \, \text{M} \cdot \text{s}^{-1} \][/tex]
[tex]\[ [A]_t = -kt + [A]_0 \][/tex]
Where:
- [tex]\([A]_t\)[/tex] is the concentration of the reactant at time [tex]\( t \)[/tex]
- [tex]\( k \)[/tex] is the rate constant
- [tex]\( t \)[/tex] is the time
- [tex]\([A]_0\)[/tex] is the initial concentration of the reactant
Given:
- Initial concentration [tex]\([A]_0\)[/tex] = 0.100 M at [tex]\( t = 110 \)[/tex] s
- Concentration [tex]\([A]_t\)[/tex] = 3.50 \times 10^{-2} \) M at [tex]\( t = 395 \)[/tex] s
We need to find the change in concentration and change in time first.
1. Calculate the change in concentration ([tex]\(\Delta [A]\)[/tex]):
[tex]\[ \Delta [A] = [A]_0 - [A]_t \][/tex]
[tex]\[ \Delta [A] = 0.100 \, \text{M} - 3.50 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ \Delta [A] = 0.100 \, \text{M} - 0.035 \, \text{M} \][/tex]
[tex]\[ \Delta [A] = 0.065 \, \text{M} \][/tex]
2. Calculate the change in time ([tex]\(\Delta t\)[/tex]):
[tex]\[ \Delta t = t_2 - t_1 \][/tex]
[tex]\[ \Delta t = 395 \, \text{s} - 110 \, \text{s} \][/tex]
[tex]\[ \Delta t = 285 \, \text{s} \][/tex]
3. Now, we use the formula rearranged for the rate constant ([tex]\( k \)[/tex]):
[tex]\[ k = \frac{\Delta [A]}{\Delta t} \][/tex]
Substitute the values:
[tex]\[ k = \frac{0.065 \, \text{M}}{285 \, \text{s}} \][/tex]
Perform the division to find [tex]\( k \)[/tex]:
[tex]\[ k \approx 0.000228 \, \text{M/s} \][/tex]
Therefore, the rate constant for the reaction is:
[tex]\[ k = 0.000228 \, \text{M} \cdot \text{s}^{-1} \][/tex]
Make sure to include the appropriate units to indicate the multiplication explicitly:
[tex]\[ k = 0.000228 \, \text{M} \cdot \text{s}^{-1} \][/tex]
So the final answer is:
[tex]\[ k = 0.000228 \, \text{M} \cdot \text{s}^{-1} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. For dependable and accurate answers, visit IDNLearn.com. Thanks for visiting, and see you next time for more helpful information.