IDNLearn.com: Your trusted source for accurate and reliable answers. Join our community to receive timely and reliable responses to your questions from knowledgeable professionals.
Sagot :
Let's fill in the missing numbers and symbols for the given nuclear processes step by step:
### Part A
The original nuclear equation is:
[tex]\[ \ce{_{16}^{31} Si \longrightarrow{ }_{14}^{28} Si +{ }_0^1 n } \][/tex]
To balance the equation, we need to find the missing isotope that decays into [tex]\(\ce{_{14}^{28} Si}\)[/tex] and [tex]\(\ce{_0^1 n}\)[/tex].
The isotope [tex]\(\ce{_{16}^{31} Si}\)[/tex] has:
- Mass number = [tex]\(31\)[/tex]
- Atomic number = [tex]\(16\)[/tex]
The given product [tex]\(\ce{_{14}^{28} Si}\)[/tex] has:
- Mass number = [tex]\(28\)[/tex]
- Atomic number = [tex]\(14\)[/tex]
A neutron [tex]\(\ce{_0^1 n}\)[/tex] has:
- Mass number = [tex]\(1\)[/tex]
- Atomic number = [tex]\(0\)[/tex]
We apply the conservation of mass number and atomic number:
- Mass number: [tex]\(31 = 28 + 1\)[/tex]
- Atomic number: [tex]\(16 = 14 + 0\)[/tex]
So the original equation is balanced correctly.
### Part B
The original nuclear equation is:
[tex]\[ \ce{_{19}^{40} K \longrightarrow{ }_{18}^{40} Ar +{ }_1^1 H } \][/tex]
For potassium [tex]\(\ce{_{19}^{40} K}\)[/tex]:
- Mass number = [tex]\(40\)[/tex]
- Atomic number = [tex]\(19\)[/tex]
For argon [tex]\(\ce{_{18}^{40} Ar}\)[/tex]:
- Mass number = [tex]\(40\)[/tex]
- Atomic number = [tex]\(18\)[/tex]
For the proton [tex]\(\ce{_1^1 H}\)[/tex]:
- Mass number = [tex]\(1\)[/tex]
- Atomic number = [tex]\(1\)[/tex]
We check for the conservation of mass number and atomic number:
- Mass number: [tex]\(40 = 40 + 1\)[/tex]
- Atomic number: [tex]\(19 = 18 + 1\)[/tex]
So the original equation is balanced correctly.
### Part C
The original nuclear equation is:
[tex]\[ \ce{_{24}^{52} Cr \longrightarrow{ }_{22}^{48} Ti +[]^{[]}[] } \][/tex]
For chromium [tex]\(\ce{_{24}^{52} Cr}\)[/tex]:
- Mass number = [tex]\(52\)[/tex]
- Atomic number = [tex]\(24\)[/tex]
For titanium [tex]\(\ce{_{22}^{48} Ti}\)[/tex]:
- Mass number = [tex]\(48\)[/tex]
- Atomic number = [tex]\(22\)[/tex]
We need to find the missing particle that completes the equation. Let's denote it by [tex]\(\ce{_z^A X}\)[/tex]:
Applying the conservation laws:
- Mass number: [tex]\(52 = 48 + A\)[/tex]
- Atomic number: [tex]\(24 = 22 + z\)[/tex]
Solving for [tex]\(A\)[/tex] (mass number) and [tex]\(z\)[/tex] (atomic number):
- [tex]\(A = 52 - 48 = 4\)[/tex]
- [tex]\(z = 24 - 22 = 2\)[/tex]
This missing particle is [tex]\(\ce{_2^4 He}\)[/tex] (an alpha particle).
So the completed equation is:
[tex]\[ \ce{_{24}^{52} Cr \longrightarrow { }_{22}^{48} Ti +_{2}^{4} He } \][/tex]
### Part D
The original nuclear equation is:
[tex]\[ \ce{_{24}^{55} Cr \longrightarrow{ }_{25}^{55} Mn +{ }_{-1}^0 \beta } \][/tex]
For chromium [tex]\(\ce{_{24}^{55} Cr}\)[/tex]:
- Mass number = [tex]\(55\)[/tex]
- Atomic number = [tex]\(24\)[/tex]
For manganese [tex]\(\ce{_{25}^{55} Mn}\)[/tex]:
- Mass number = [tex]\(55\)[/tex]
- Atomic number = [tex]\(25\)[/tex]
For the beta particle [tex]\(\ce{_{-1}^0 \beta}\)[/tex]:
- Mass number = [tex]\(0\)[/tex]
- Atomic number = [tex]\(-1\)[/tex]
We check for the conservation of mass number and atomic number:
- Mass number: [tex]\(55 = 55 + 0\)[/tex]
- Atomic number: [tex]\(24 = 25 - 1\)[/tex]
So the original equation is balanced correctly.
Combining all the parts, we have:
- Part A: [tex]\[ \ce{_{16}^{31} Si \longrightarrow{ }_{14}^{28} Si +{ }_0^1 n } \][/tex]
- Part B: [tex]\[ \ce{_{19}^{40} K \longrightarrow{ }_{18}^{40} Ar +{ }_1^1 H } \][/tex]
- Part C: [tex]\[ \ce{_{24}^{52} Cr \longrightarrow{ }_{22}^{48} Ti +_{2}^{4} He } \][/tex]
- Part D: [tex]\[ \ce{_{24}^{55} Cr \longrightarrow{ }_{25}^{55} Mn +{ }_{-1}^0 \beta } \][/tex]
### Part A
The original nuclear equation is:
[tex]\[ \ce{_{16}^{31} Si \longrightarrow{ }_{14}^{28} Si +{ }_0^1 n } \][/tex]
To balance the equation, we need to find the missing isotope that decays into [tex]\(\ce{_{14}^{28} Si}\)[/tex] and [tex]\(\ce{_0^1 n}\)[/tex].
The isotope [tex]\(\ce{_{16}^{31} Si}\)[/tex] has:
- Mass number = [tex]\(31\)[/tex]
- Atomic number = [tex]\(16\)[/tex]
The given product [tex]\(\ce{_{14}^{28} Si}\)[/tex] has:
- Mass number = [tex]\(28\)[/tex]
- Atomic number = [tex]\(14\)[/tex]
A neutron [tex]\(\ce{_0^1 n}\)[/tex] has:
- Mass number = [tex]\(1\)[/tex]
- Atomic number = [tex]\(0\)[/tex]
We apply the conservation of mass number and atomic number:
- Mass number: [tex]\(31 = 28 + 1\)[/tex]
- Atomic number: [tex]\(16 = 14 + 0\)[/tex]
So the original equation is balanced correctly.
### Part B
The original nuclear equation is:
[tex]\[ \ce{_{19}^{40} K \longrightarrow{ }_{18}^{40} Ar +{ }_1^1 H } \][/tex]
For potassium [tex]\(\ce{_{19}^{40} K}\)[/tex]:
- Mass number = [tex]\(40\)[/tex]
- Atomic number = [tex]\(19\)[/tex]
For argon [tex]\(\ce{_{18}^{40} Ar}\)[/tex]:
- Mass number = [tex]\(40\)[/tex]
- Atomic number = [tex]\(18\)[/tex]
For the proton [tex]\(\ce{_1^1 H}\)[/tex]:
- Mass number = [tex]\(1\)[/tex]
- Atomic number = [tex]\(1\)[/tex]
We check for the conservation of mass number and atomic number:
- Mass number: [tex]\(40 = 40 + 1\)[/tex]
- Atomic number: [tex]\(19 = 18 + 1\)[/tex]
So the original equation is balanced correctly.
### Part C
The original nuclear equation is:
[tex]\[ \ce{_{24}^{52} Cr \longrightarrow{ }_{22}^{48} Ti +[]^{[]}[] } \][/tex]
For chromium [tex]\(\ce{_{24}^{52} Cr}\)[/tex]:
- Mass number = [tex]\(52\)[/tex]
- Atomic number = [tex]\(24\)[/tex]
For titanium [tex]\(\ce{_{22}^{48} Ti}\)[/tex]:
- Mass number = [tex]\(48\)[/tex]
- Atomic number = [tex]\(22\)[/tex]
We need to find the missing particle that completes the equation. Let's denote it by [tex]\(\ce{_z^A X}\)[/tex]:
Applying the conservation laws:
- Mass number: [tex]\(52 = 48 + A\)[/tex]
- Atomic number: [tex]\(24 = 22 + z\)[/tex]
Solving for [tex]\(A\)[/tex] (mass number) and [tex]\(z\)[/tex] (atomic number):
- [tex]\(A = 52 - 48 = 4\)[/tex]
- [tex]\(z = 24 - 22 = 2\)[/tex]
This missing particle is [tex]\(\ce{_2^4 He}\)[/tex] (an alpha particle).
So the completed equation is:
[tex]\[ \ce{_{24}^{52} Cr \longrightarrow { }_{22}^{48} Ti +_{2}^{4} He } \][/tex]
### Part D
The original nuclear equation is:
[tex]\[ \ce{_{24}^{55} Cr \longrightarrow{ }_{25}^{55} Mn +{ }_{-1}^0 \beta } \][/tex]
For chromium [tex]\(\ce{_{24}^{55} Cr}\)[/tex]:
- Mass number = [tex]\(55\)[/tex]
- Atomic number = [tex]\(24\)[/tex]
For manganese [tex]\(\ce{_{25}^{55} Mn}\)[/tex]:
- Mass number = [tex]\(55\)[/tex]
- Atomic number = [tex]\(25\)[/tex]
For the beta particle [tex]\(\ce{_{-1}^0 \beta}\)[/tex]:
- Mass number = [tex]\(0\)[/tex]
- Atomic number = [tex]\(-1\)[/tex]
We check for the conservation of mass number and atomic number:
- Mass number: [tex]\(55 = 55 + 0\)[/tex]
- Atomic number: [tex]\(24 = 25 - 1\)[/tex]
So the original equation is balanced correctly.
Combining all the parts, we have:
- Part A: [tex]\[ \ce{_{16}^{31} Si \longrightarrow{ }_{14}^{28} Si +{ }_0^1 n } \][/tex]
- Part B: [tex]\[ \ce{_{19}^{40} K \longrightarrow{ }_{18}^{40} Ar +{ }_1^1 H } \][/tex]
- Part C: [tex]\[ \ce{_{24}^{52} Cr \longrightarrow{ }_{22}^{48} Ti +_{2}^{4} He } \][/tex]
- Part D: [tex]\[ \ce{_{24}^{55} Cr \longrightarrow{ }_{25}^{55} Mn +{ }_{-1}^0 \beta } \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.