Get the information you need with the help of IDNLearn.com's extensive Q&A platform. Get accurate and timely answers to your queries from our extensive network of experienced professionals.
Sagot :
Let's fill in the missing numbers and symbols for the given nuclear processes step by step:
### Part A
The original nuclear equation is:
[tex]\[ \ce{_{16}^{31} Si \longrightarrow{ }_{14}^{28} Si +{ }_0^1 n } \][/tex]
To balance the equation, we need to find the missing isotope that decays into [tex]\(\ce{_{14}^{28} Si}\)[/tex] and [tex]\(\ce{_0^1 n}\)[/tex].
The isotope [tex]\(\ce{_{16}^{31} Si}\)[/tex] has:
- Mass number = [tex]\(31\)[/tex]
- Atomic number = [tex]\(16\)[/tex]
The given product [tex]\(\ce{_{14}^{28} Si}\)[/tex] has:
- Mass number = [tex]\(28\)[/tex]
- Atomic number = [tex]\(14\)[/tex]
A neutron [tex]\(\ce{_0^1 n}\)[/tex] has:
- Mass number = [tex]\(1\)[/tex]
- Atomic number = [tex]\(0\)[/tex]
We apply the conservation of mass number and atomic number:
- Mass number: [tex]\(31 = 28 + 1\)[/tex]
- Atomic number: [tex]\(16 = 14 + 0\)[/tex]
So the original equation is balanced correctly.
### Part B
The original nuclear equation is:
[tex]\[ \ce{_{19}^{40} K \longrightarrow{ }_{18}^{40} Ar +{ }_1^1 H } \][/tex]
For potassium [tex]\(\ce{_{19}^{40} K}\)[/tex]:
- Mass number = [tex]\(40\)[/tex]
- Atomic number = [tex]\(19\)[/tex]
For argon [tex]\(\ce{_{18}^{40} Ar}\)[/tex]:
- Mass number = [tex]\(40\)[/tex]
- Atomic number = [tex]\(18\)[/tex]
For the proton [tex]\(\ce{_1^1 H}\)[/tex]:
- Mass number = [tex]\(1\)[/tex]
- Atomic number = [tex]\(1\)[/tex]
We check for the conservation of mass number and atomic number:
- Mass number: [tex]\(40 = 40 + 1\)[/tex]
- Atomic number: [tex]\(19 = 18 + 1\)[/tex]
So the original equation is balanced correctly.
### Part C
The original nuclear equation is:
[tex]\[ \ce{_{24}^{52} Cr \longrightarrow{ }_{22}^{48} Ti +[]^{[]}[] } \][/tex]
For chromium [tex]\(\ce{_{24}^{52} Cr}\)[/tex]:
- Mass number = [tex]\(52\)[/tex]
- Atomic number = [tex]\(24\)[/tex]
For titanium [tex]\(\ce{_{22}^{48} Ti}\)[/tex]:
- Mass number = [tex]\(48\)[/tex]
- Atomic number = [tex]\(22\)[/tex]
We need to find the missing particle that completes the equation. Let's denote it by [tex]\(\ce{_z^A X}\)[/tex]:
Applying the conservation laws:
- Mass number: [tex]\(52 = 48 + A\)[/tex]
- Atomic number: [tex]\(24 = 22 + z\)[/tex]
Solving for [tex]\(A\)[/tex] (mass number) and [tex]\(z\)[/tex] (atomic number):
- [tex]\(A = 52 - 48 = 4\)[/tex]
- [tex]\(z = 24 - 22 = 2\)[/tex]
This missing particle is [tex]\(\ce{_2^4 He}\)[/tex] (an alpha particle).
So the completed equation is:
[tex]\[ \ce{_{24}^{52} Cr \longrightarrow { }_{22}^{48} Ti +_{2}^{4} He } \][/tex]
### Part D
The original nuclear equation is:
[tex]\[ \ce{_{24}^{55} Cr \longrightarrow{ }_{25}^{55} Mn +{ }_{-1}^0 \beta } \][/tex]
For chromium [tex]\(\ce{_{24}^{55} Cr}\)[/tex]:
- Mass number = [tex]\(55\)[/tex]
- Atomic number = [tex]\(24\)[/tex]
For manganese [tex]\(\ce{_{25}^{55} Mn}\)[/tex]:
- Mass number = [tex]\(55\)[/tex]
- Atomic number = [tex]\(25\)[/tex]
For the beta particle [tex]\(\ce{_{-1}^0 \beta}\)[/tex]:
- Mass number = [tex]\(0\)[/tex]
- Atomic number = [tex]\(-1\)[/tex]
We check for the conservation of mass number and atomic number:
- Mass number: [tex]\(55 = 55 + 0\)[/tex]
- Atomic number: [tex]\(24 = 25 - 1\)[/tex]
So the original equation is balanced correctly.
Combining all the parts, we have:
- Part A: [tex]\[ \ce{_{16}^{31} Si \longrightarrow{ }_{14}^{28} Si +{ }_0^1 n } \][/tex]
- Part B: [tex]\[ \ce{_{19}^{40} K \longrightarrow{ }_{18}^{40} Ar +{ }_1^1 H } \][/tex]
- Part C: [tex]\[ \ce{_{24}^{52} Cr \longrightarrow{ }_{22}^{48} Ti +_{2}^{4} He } \][/tex]
- Part D: [tex]\[ \ce{_{24}^{55} Cr \longrightarrow{ }_{25}^{55} Mn +{ }_{-1}^0 \beta } \][/tex]
### Part A
The original nuclear equation is:
[tex]\[ \ce{_{16}^{31} Si \longrightarrow{ }_{14}^{28} Si +{ }_0^1 n } \][/tex]
To balance the equation, we need to find the missing isotope that decays into [tex]\(\ce{_{14}^{28} Si}\)[/tex] and [tex]\(\ce{_0^1 n}\)[/tex].
The isotope [tex]\(\ce{_{16}^{31} Si}\)[/tex] has:
- Mass number = [tex]\(31\)[/tex]
- Atomic number = [tex]\(16\)[/tex]
The given product [tex]\(\ce{_{14}^{28} Si}\)[/tex] has:
- Mass number = [tex]\(28\)[/tex]
- Atomic number = [tex]\(14\)[/tex]
A neutron [tex]\(\ce{_0^1 n}\)[/tex] has:
- Mass number = [tex]\(1\)[/tex]
- Atomic number = [tex]\(0\)[/tex]
We apply the conservation of mass number and atomic number:
- Mass number: [tex]\(31 = 28 + 1\)[/tex]
- Atomic number: [tex]\(16 = 14 + 0\)[/tex]
So the original equation is balanced correctly.
### Part B
The original nuclear equation is:
[tex]\[ \ce{_{19}^{40} K \longrightarrow{ }_{18}^{40} Ar +{ }_1^1 H } \][/tex]
For potassium [tex]\(\ce{_{19}^{40} K}\)[/tex]:
- Mass number = [tex]\(40\)[/tex]
- Atomic number = [tex]\(19\)[/tex]
For argon [tex]\(\ce{_{18}^{40} Ar}\)[/tex]:
- Mass number = [tex]\(40\)[/tex]
- Atomic number = [tex]\(18\)[/tex]
For the proton [tex]\(\ce{_1^1 H}\)[/tex]:
- Mass number = [tex]\(1\)[/tex]
- Atomic number = [tex]\(1\)[/tex]
We check for the conservation of mass number and atomic number:
- Mass number: [tex]\(40 = 40 + 1\)[/tex]
- Atomic number: [tex]\(19 = 18 + 1\)[/tex]
So the original equation is balanced correctly.
### Part C
The original nuclear equation is:
[tex]\[ \ce{_{24}^{52} Cr \longrightarrow{ }_{22}^{48} Ti +[]^{[]}[] } \][/tex]
For chromium [tex]\(\ce{_{24}^{52} Cr}\)[/tex]:
- Mass number = [tex]\(52\)[/tex]
- Atomic number = [tex]\(24\)[/tex]
For titanium [tex]\(\ce{_{22}^{48} Ti}\)[/tex]:
- Mass number = [tex]\(48\)[/tex]
- Atomic number = [tex]\(22\)[/tex]
We need to find the missing particle that completes the equation. Let's denote it by [tex]\(\ce{_z^A X}\)[/tex]:
Applying the conservation laws:
- Mass number: [tex]\(52 = 48 + A\)[/tex]
- Atomic number: [tex]\(24 = 22 + z\)[/tex]
Solving for [tex]\(A\)[/tex] (mass number) and [tex]\(z\)[/tex] (atomic number):
- [tex]\(A = 52 - 48 = 4\)[/tex]
- [tex]\(z = 24 - 22 = 2\)[/tex]
This missing particle is [tex]\(\ce{_2^4 He}\)[/tex] (an alpha particle).
So the completed equation is:
[tex]\[ \ce{_{24}^{52} Cr \longrightarrow { }_{22}^{48} Ti +_{2}^{4} He } \][/tex]
### Part D
The original nuclear equation is:
[tex]\[ \ce{_{24}^{55} Cr \longrightarrow{ }_{25}^{55} Mn +{ }_{-1}^0 \beta } \][/tex]
For chromium [tex]\(\ce{_{24}^{55} Cr}\)[/tex]:
- Mass number = [tex]\(55\)[/tex]
- Atomic number = [tex]\(24\)[/tex]
For manganese [tex]\(\ce{_{25}^{55} Mn}\)[/tex]:
- Mass number = [tex]\(55\)[/tex]
- Atomic number = [tex]\(25\)[/tex]
For the beta particle [tex]\(\ce{_{-1}^0 \beta}\)[/tex]:
- Mass number = [tex]\(0\)[/tex]
- Atomic number = [tex]\(-1\)[/tex]
We check for the conservation of mass number and atomic number:
- Mass number: [tex]\(55 = 55 + 0\)[/tex]
- Atomic number: [tex]\(24 = 25 - 1\)[/tex]
So the original equation is balanced correctly.
Combining all the parts, we have:
- Part A: [tex]\[ \ce{_{16}^{31} Si \longrightarrow{ }_{14}^{28} Si +{ }_0^1 n } \][/tex]
- Part B: [tex]\[ \ce{_{19}^{40} K \longrightarrow{ }_{18}^{40} Ar +{ }_1^1 H } \][/tex]
- Part C: [tex]\[ \ce{_{24}^{52} Cr \longrightarrow{ }_{22}^{48} Ti +_{2}^{4} He } \][/tex]
- Part D: [tex]\[ \ce{_{24}^{55} Cr \longrightarrow{ }_{25}^{55} Mn +{ }_{-1}^0 \beta } \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.