IDNLearn.com offers a unique blend of expert answers and community insights. Join our community to receive prompt, thorough responses from knowledgeable experts.
Sagot :
To find which scenario generates the most elastic potential energy, we will calculate the elastic potential energy for each scenario using the formula:
[tex]\[ U = \frac{1}{2} k x^2 \][/tex]
where:
- [tex]\( U \)[/tex] is the elastic potential energy,
- [tex]\( k \)[/tex] is the spring constant, and
- [tex]\( x \)[/tex] is the compression distance.
### Scenario A
For a spring with a spring constant [tex]\( k_a = 3 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_a = 1.0 \)[/tex] m:
[tex]\[ U_a = \frac{1}{2} k_a x_a^2 \][/tex]
[tex]\[ U_a = \frac{1}{2} \times 3 \times (1.0)^2 \][/tex]
[tex]\[ U_a = \frac{3}{2} \times 1 \][/tex]
[tex]\[ U_a = 1.5 \text{ Joules} \][/tex]
### Scenario B
For a spring with a spring constant [tex]\( k_b = 6 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_b = 0.8 \)[/tex] m:
[tex]\[ U_b = \frac{1}{2} k_b x_b^2 \][/tex]
[tex]\[ U_b = \frac{1}{2} \times 6 \times (0.8)^2 \][/tex]
[tex]\[ U_b = 3 \times 0.64 \][/tex]
[tex]\[ U_b = 1.92 \text{ Joules} \][/tex]
### Scenario C
For a spring with a spring constant [tex]\( k_c = 9 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_c = 0.6 \)[/tex] m:
[tex]\[ U_c = \frac{1}{2} k_c x_c^2 \][/tex]
[tex]\[ U_c = \frac{1}{2} \times 9 \times (0.6)^2 \][/tex]
[tex]\[ U_c = 4.5 \times 0.36 \][/tex]
[tex]\[ U_c = 1.62 \text{ Joules} \][/tex]
### Scenario D
For a spring with a spring constant [tex]\( k_d = 12 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_d = 0.4 \)[/tex] m:
[tex]\[ U_d = \frac{1}{2} k_d x_d^2 \][/tex]
[tex]\[ U_d = \frac{1}{2} \times 12 \times (0.4)^2 \][/tex]
[tex]\[ U_d = 6 \times 0.16 \][/tex]
[tex]\[ U_d = 0.96 \text{ Joules} \][/tex]
### Compare the Energies
Now that we have the elastic potential energies for each scenario:
- [tex]\( U_a = 1.5 \)[/tex] Joules
- [tex]\( U_b = 1.92 \)[/tex] Joules
- [tex]\( U_c = 1.62 \)[/tex] Joules
- [tex]\( U_d = 0.96 \)[/tex] Joules
The scenario with the most elastic potential energy is Scenario B with [tex]\( 1.92 \)[/tex] Joules.
Thus, Scenario B generates the most elastic potential energy.
[tex]\[ U = \frac{1}{2} k x^2 \][/tex]
where:
- [tex]\( U \)[/tex] is the elastic potential energy,
- [tex]\( k \)[/tex] is the spring constant, and
- [tex]\( x \)[/tex] is the compression distance.
### Scenario A
For a spring with a spring constant [tex]\( k_a = 3 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_a = 1.0 \)[/tex] m:
[tex]\[ U_a = \frac{1}{2} k_a x_a^2 \][/tex]
[tex]\[ U_a = \frac{1}{2} \times 3 \times (1.0)^2 \][/tex]
[tex]\[ U_a = \frac{3}{2} \times 1 \][/tex]
[tex]\[ U_a = 1.5 \text{ Joules} \][/tex]
### Scenario B
For a spring with a spring constant [tex]\( k_b = 6 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_b = 0.8 \)[/tex] m:
[tex]\[ U_b = \frac{1}{2} k_b x_b^2 \][/tex]
[tex]\[ U_b = \frac{1}{2} \times 6 \times (0.8)^2 \][/tex]
[tex]\[ U_b = 3 \times 0.64 \][/tex]
[tex]\[ U_b = 1.92 \text{ Joules} \][/tex]
### Scenario C
For a spring with a spring constant [tex]\( k_c = 9 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_c = 0.6 \)[/tex] m:
[tex]\[ U_c = \frac{1}{2} k_c x_c^2 \][/tex]
[tex]\[ U_c = \frac{1}{2} \times 9 \times (0.6)^2 \][/tex]
[tex]\[ U_c = 4.5 \times 0.36 \][/tex]
[tex]\[ U_c = 1.62 \text{ Joules} \][/tex]
### Scenario D
For a spring with a spring constant [tex]\( k_d = 12 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_d = 0.4 \)[/tex] m:
[tex]\[ U_d = \frac{1}{2} k_d x_d^2 \][/tex]
[tex]\[ U_d = \frac{1}{2} \times 12 \times (0.4)^2 \][/tex]
[tex]\[ U_d = 6 \times 0.16 \][/tex]
[tex]\[ U_d = 0.96 \text{ Joules} \][/tex]
### Compare the Energies
Now that we have the elastic potential energies for each scenario:
- [tex]\( U_a = 1.5 \)[/tex] Joules
- [tex]\( U_b = 1.92 \)[/tex] Joules
- [tex]\( U_c = 1.62 \)[/tex] Joules
- [tex]\( U_d = 0.96 \)[/tex] Joules
The scenario with the most elastic potential energy is Scenario B with [tex]\( 1.92 \)[/tex] Joules.
Thus, Scenario B generates the most elastic potential energy.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.