IDNLearn.com provides a user-friendly platform for finding and sharing knowledge. Our Q&A platform offers reliable and thorough answers to help you make informed decisions quickly and easily.
Sagot :
To solve the given vector differential equation [tex]\( \mathbf{r}'(t) = 8t^{-1} \mathbf{i} + 10t \mathbf{j} + 21t^2 \mathbf{k} \)[/tex] with the initial condition [tex]\( \mathbf{r}(1) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex], follow these steps:
1. Write the differential equation in component form:
[tex]\[ \mathbf{r}'(t) = \left(8t^{-1}\right)\mathbf{i} + \left(10t\right)\mathbf{j} + \left(21t^2\right)\mathbf{k} \][/tex]
2. Integrate each component of the vector:
- For the [tex]\(\mathbf{i}\)[/tex]-component:
[tex]\[ \int 8t^{-1} \, dt = 8 \int t^{-1} \, dt = 8 \ln |t| + C_1 \][/tex]
Since [tex]\(t > 0\)[/tex], we can write the answer as:
[tex]\[ 8 \ln t + C_1 \][/tex]
- For the [tex]\(\mathbf{j}\)[/tex]-component:
[tex]\[ \int 10t \, dt = 10 \int t \, dt = 10 \left(\frac{t^2}{2}\right) + C_2 = 5t^2 + C_2 \][/tex]
- For the [tex]\(\mathbf{k}\)[/tex]-component:
[tex]\[ \int 21t^2 \, dt = 21 \int t^2 \, dt = 21 \left(\frac{t^3}{3}\right) + C_3 = 7t^3 + C_3 \][/tex]
3. Combine the integrated components to form the general solution of the vector [tex]\( \mathbf{r}(t) \)[/tex]:
[tex]\[ \mathbf{r}(t) = (8 \ln t + C_1)\mathbf{i} + (5t^2 + C_2)\mathbf{j} + (7t^3 + C_3)\mathbf{k} \][/tex]
4. Apply the initial condition [tex]\( \mathbf{r}(1) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex]:
[tex]\[ \mathbf{r}(1) = (8 \ln 1 + C_1)\mathbf{i} + (5 \cdot 1^2 + C_2)\mathbf{j} + (7 \cdot 1^3 + C_3)\mathbf{k} \][/tex]
Simplify using [tex]\( \ln 1 = 0 \)[/tex]:
[tex]\[ \mathbf{r}(1) = C_1 \mathbf{i} + (5 + C_2) \mathbf{j} + (7 + C_3) \mathbf{k} \][/tex]
Set this equal to [tex]\( \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex]:
[tex]\[ C_1 \mathbf{i} + (5 + C_2) \mathbf{j} + (7 + C_3) \mathbf{k} = \mathbf{i} + \mathbf{j} + \mathbf{k} \][/tex]
This gives us the equations for the constants [tex]\( C_1, C_2, \)[/tex] and [tex]\( C_3 \)[/tex]:
[tex]\[ C_1 = 1 \][/tex]
[tex]\[ 5 + C_2 = 1 \implies C_2 = -4 \][/tex]
[tex]\[ 7 + C_3 = 1 \implies C_3 = -6 \][/tex]
5. Substitute the constants [tex]\( C_1, C_2, \)[/tex] and [tex]\( C_3 \)[/tex] back into the general solution:
[tex]\[ \mathbf{r}(t) = (8 \ln t + 1) \mathbf{i} + (5t^2 - 4) \mathbf{j} + (7t^3 - 6) \mathbf{k} \][/tex]
Thus, the solution to the vector differential equation [tex]\( \mathbf{r}'(t) = 8t^{-1} \mathbf{i} + 10t \mathbf{j} + 21t^2 \mathbf{k} \)[/tex] with the initial condition [tex]\( \mathbf{r}(1) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex] is:
[tex]\[ \mathbf{r}(t) = (8 \ln t + 1) \mathbf{i} + (5t^2 - 4) \mathbf{j} + (7t^3 - 6) \mathbf{k} \][/tex]
1. Write the differential equation in component form:
[tex]\[ \mathbf{r}'(t) = \left(8t^{-1}\right)\mathbf{i} + \left(10t\right)\mathbf{j} + \left(21t^2\right)\mathbf{k} \][/tex]
2. Integrate each component of the vector:
- For the [tex]\(\mathbf{i}\)[/tex]-component:
[tex]\[ \int 8t^{-1} \, dt = 8 \int t^{-1} \, dt = 8 \ln |t| + C_1 \][/tex]
Since [tex]\(t > 0\)[/tex], we can write the answer as:
[tex]\[ 8 \ln t + C_1 \][/tex]
- For the [tex]\(\mathbf{j}\)[/tex]-component:
[tex]\[ \int 10t \, dt = 10 \int t \, dt = 10 \left(\frac{t^2}{2}\right) + C_2 = 5t^2 + C_2 \][/tex]
- For the [tex]\(\mathbf{k}\)[/tex]-component:
[tex]\[ \int 21t^2 \, dt = 21 \int t^2 \, dt = 21 \left(\frac{t^3}{3}\right) + C_3 = 7t^3 + C_3 \][/tex]
3. Combine the integrated components to form the general solution of the vector [tex]\( \mathbf{r}(t) \)[/tex]:
[tex]\[ \mathbf{r}(t) = (8 \ln t + C_1)\mathbf{i} + (5t^2 + C_2)\mathbf{j} + (7t^3 + C_3)\mathbf{k} \][/tex]
4. Apply the initial condition [tex]\( \mathbf{r}(1) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex]:
[tex]\[ \mathbf{r}(1) = (8 \ln 1 + C_1)\mathbf{i} + (5 \cdot 1^2 + C_2)\mathbf{j} + (7 \cdot 1^3 + C_3)\mathbf{k} \][/tex]
Simplify using [tex]\( \ln 1 = 0 \)[/tex]:
[tex]\[ \mathbf{r}(1) = C_1 \mathbf{i} + (5 + C_2) \mathbf{j} + (7 + C_3) \mathbf{k} \][/tex]
Set this equal to [tex]\( \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex]:
[tex]\[ C_1 \mathbf{i} + (5 + C_2) \mathbf{j} + (7 + C_3) \mathbf{k} = \mathbf{i} + \mathbf{j} + \mathbf{k} \][/tex]
This gives us the equations for the constants [tex]\( C_1, C_2, \)[/tex] and [tex]\( C_3 \)[/tex]:
[tex]\[ C_1 = 1 \][/tex]
[tex]\[ 5 + C_2 = 1 \implies C_2 = -4 \][/tex]
[tex]\[ 7 + C_3 = 1 \implies C_3 = -6 \][/tex]
5. Substitute the constants [tex]\( C_1, C_2, \)[/tex] and [tex]\( C_3 \)[/tex] back into the general solution:
[tex]\[ \mathbf{r}(t) = (8 \ln t + 1) \mathbf{i} + (5t^2 - 4) \mathbf{j} + (7t^3 - 6) \mathbf{k} \][/tex]
Thus, the solution to the vector differential equation [tex]\( \mathbf{r}'(t) = 8t^{-1} \mathbf{i} + 10t \mathbf{j} + 21t^2 \mathbf{k} \)[/tex] with the initial condition [tex]\( \mathbf{r}(1) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex] is:
[tex]\[ \mathbf{r}(t) = (8 \ln t + 1) \mathbf{i} + (5t^2 - 4) \mathbf{j} + (7t^3 - 6) \mathbf{k} \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.