Dive into the world of knowledge and get your queries resolved at IDNLearn.com. Discover reliable answers to your questions with our extensive database of expert knowledge.
Sagot :
To determine the equilibrium constant [tex]\(\mathbf{K_p}\)[/tex] for the given reaction at the specified conditions, we start by writing down the balanced chemical equation and the expression for [tex]\(\mathbf{K_p}\)[/tex] in terms of the partial pressures of the reactants and products.
The balanced chemical equation is:
[tex]\[ 4 \text{HCl (g)} + \text{O}_2 \text{(g)} \rightarrow 2 \text{Cl}_2 \text{(g)} + 2 \text{H}_2\text{O (g)} \][/tex]
The expression for [tex]\(\mathbf{K_p}\)[/tex] based on this equation is:
[tex]\[ K_p = \frac{(P_{\text{Cl}_2})^2 (P_{\text{H}_2\text{O}})^2}{ (P_{\text{HCl}})^4 (P_{\text{O}_2}) } \][/tex]
Given the pressures at equilibrium, we have:
[tex]\[ \begin{aligned} P_{\text{HCl}} &= 67.8 \text{ atm} \\ P_{\text{O}_2} &= 57.9 \text{ atm} \\ P_{\text{Cl}_2} &= 29.8 \text{ atm} \\ P_{\text{H}_2\text{O}} &= 50.4 \text{ atm} \end{aligned} \][/tex]
Now, substitute these values into the [tex]\(\mathbf{K_p}\)[/tex] expression:
[tex]\[ K_p = \frac{(29.8)^2 (50.4)^2}{(67.8)^4 (57.9)} \][/tex]
First, we'll calculate the individual terms:
[tex]\[ (29.8)^2 = 888.04 \][/tex]
[tex]\[ (50.4)^2 = 2540.16 \][/tex]
[tex]\[ (67.8)^4 \approx 2118644.41 \][/tex]
Next, multiply the numerators and denominators:
[tex]\[ K_p = \frac{888.04 \times 2540.16}{2118644.41 \times 57.9} \][/tex]
Calculate the multiplication:
[tex]\[ 888.04 \times 2540.16 \approx 2255422.064 \][/tex]
And then the denominator:
[tex]\[ 2118644.41 \times 57.9 \approx 122699309.379 \][/tex]
So, the expression for [tex]\(K_p\)[/tex] becomes:
[tex]\[ K_p = \frac{2255422.064}{122699309.379} \][/tex]
Finally, performing the division we get:
[tex]\[ K_p \approx 0.0018437254979959442 \][/tex]
Rounding this final answer to 2 significant digits, we obtain:
[tex]\[ K_p \approx 0.0018 \][/tex]
Therefore, the equilibrium constant [tex]\( \boldsymbol{K_p} \)[/tex] for the reaction, rounded to two significant digits, is:
[tex]\[ \boxed{0.0018} \][/tex]
The balanced chemical equation is:
[tex]\[ 4 \text{HCl (g)} + \text{O}_2 \text{(g)} \rightarrow 2 \text{Cl}_2 \text{(g)} + 2 \text{H}_2\text{O (g)} \][/tex]
The expression for [tex]\(\mathbf{K_p}\)[/tex] based on this equation is:
[tex]\[ K_p = \frac{(P_{\text{Cl}_2})^2 (P_{\text{H}_2\text{O}})^2}{ (P_{\text{HCl}})^4 (P_{\text{O}_2}) } \][/tex]
Given the pressures at equilibrium, we have:
[tex]\[ \begin{aligned} P_{\text{HCl}} &= 67.8 \text{ atm} \\ P_{\text{O}_2} &= 57.9 \text{ atm} \\ P_{\text{Cl}_2} &= 29.8 \text{ atm} \\ P_{\text{H}_2\text{O}} &= 50.4 \text{ atm} \end{aligned} \][/tex]
Now, substitute these values into the [tex]\(\mathbf{K_p}\)[/tex] expression:
[tex]\[ K_p = \frac{(29.8)^2 (50.4)^2}{(67.8)^4 (57.9)} \][/tex]
First, we'll calculate the individual terms:
[tex]\[ (29.8)^2 = 888.04 \][/tex]
[tex]\[ (50.4)^2 = 2540.16 \][/tex]
[tex]\[ (67.8)^4 \approx 2118644.41 \][/tex]
Next, multiply the numerators and denominators:
[tex]\[ K_p = \frac{888.04 \times 2540.16}{2118644.41 \times 57.9} \][/tex]
Calculate the multiplication:
[tex]\[ 888.04 \times 2540.16 \approx 2255422.064 \][/tex]
And then the denominator:
[tex]\[ 2118644.41 \times 57.9 \approx 122699309.379 \][/tex]
So, the expression for [tex]\(K_p\)[/tex] becomes:
[tex]\[ K_p = \frac{2255422.064}{122699309.379} \][/tex]
Finally, performing the division we get:
[tex]\[ K_p \approx 0.0018437254979959442 \][/tex]
Rounding this final answer to 2 significant digits, we obtain:
[tex]\[ K_p \approx 0.0018 \][/tex]
Therefore, the equilibrium constant [tex]\( \boldsymbol{K_p} \)[/tex] for the reaction, rounded to two significant digits, is:
[tex]\[ \boxed{0.0018} \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.