IDNLearn.com is committed to providing high-quality answers to your questions. Our platform offers reliable and comprehensive answers to help you make informed decisions quickly and easily.

Hydrogen chloride and oxygen react to form chlorine and water as follows:
[tex]\[ 4 HCl (g) + O_2 (g) \rightarrow 2 Cl_2 (g) + 2 H_2O (g) \][/tex]

A chemist finds that at a certain temperature, the equilibrium mixture of hydrogen chloride, oxygen, chlorine, and water has the following composition:

[tex]\[
\begin{tabular}{|c|c|}
\hline
Compound & Pressure at Equilibrium (atm) \\
\hline
HCl & 67.8 \\
\hline
O_2 & 57.9 \\
\hline
Cl_2 & 29.8 \\
\hline
H_2O & 50.4 \\
\hline
\end{tabular}
\][/tex]

Calculate the value of the equilibrium constant [tex]\( K_p \)[/tex] for this reaction. Round your answer to 2 significant digits.


Sagot :

To determine the equilibrium constant [tex]\(\mathbf{K_p}\)[/tex] for the given reaction at the specified conditions, we start by writing down the balanced chemical equation and the expression for [tex]\(\mathbf{K_p}\)[/tex] in terms of the partial pressures of the reactants and products.

The balanced chemical equation is:
[tex]\[ 4 \text{HCl (g)} + \text{O}_2 \text{(g)} \rightarrow 2 \text{Cl}_2 \text{(g)} + 2 \text{H}_2\text{O (g)} \][/tex]

The expression for [tex]\(\mathbf{K_p}\)[/tex] based on this equation is:
[tex]\[ K_p = \frac{(P_{\text{Cl}_2})^2 (P_{\text{H}_2\text{O}})^2}{ (P_{\text{HCl}})^4 (P_{\text{O}_2}) } \][/tex]

Given the pressures at equilibrium, we have:
[tex]\[ \begin{aligned} P_{\text{HCl}} &= 67.8 \text{ atm} \\ P_{\text{O}_2} &= 57.9 \text{ atm} \\ P_{\text{Cl}_2} &= 29.8 \text{ atm} \\ P_{\text{H}_2\text{O}} &= 50.4 \text{ atm} \end{aligned} \][/tex]

Now, substitute these values into the [tex]\(\mathbf{K_p}\)[/tex] expression:
[tex]\[ K_p = \frac{(29.8)^2 (50.4)^2}{(67.8)^4 (57.9)} \][/tex]

First, we'll calculate the individual terms:
[tex]\[ (29.8)^2 = 888.04 \][/tex]
[tex]\[ (50.4)^2 = 2540.16 \][/tex]
[tex]\[ (67.8)^4 \approx 2118644.41 \][/tex]

Next, multiply the numerators and denominators:
[tex]\[ K_p = \frac{888.04 \times 2540.16}{2118644.41 \times 57.9} \][/tex]

Calculate the multiplication:
[tex]\[ 888.04 \times 2540.16 \approx 2255422.064 \][/tex]

And then the denominator:
[tex]\[ 2118644.41 \times 57.9 \approx 122699309.379 \][/tex]

So, the expression for [tex]\(K_p\)[/tex] becomes:
[tex]\[ K_p = \frac{2255422.064}{122699309.379} \][/tex]

Finally, performing the division we get:
[tex]\[ K_p \approx 0.0018437254979959442 \][/tex]

Rounding this final answer to 2 significant digits, we obtain:
[tex]\[ K_p \approx 0.0018 \][/tex]

Therefore, the equilibrium constant [tex]\( \boldsymbol{K_p} \)[/tex] for the reaction, rounded to two significant digits, is:
[tex]\[ \boxed{0.0018} \][/tex]