Discover a world of knowledge and community-driven answers at IDNLearn.com today. Our experts are ready to provide prompt and detailed answers to any questions you may have.
Sagot :
To find the wavelength of a photon given its energy, we will use the relationship between energy and wavelength in the context of quantum mechanics. The key formula here is derived from the energy of a photon:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
Where:
- [tex]\( E \)[/tex] is the energy of the photon.
- [tex]\( h \)[/tex] is Planck's constant.
- [tex]\( c \)[/tex] is the speed of light.
- [tex]\( \lambda \)[/tex] is the wavelength of the photon.
Given values:
- [tex]\( E = 2 \)[/tex] electron volts (eV)
Constants:
- Planck's constant, [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s
- Speed of light, [tex]\( c = 299,792,458 \)[/tex] m/s
Step-by-Step Solution:
1. Rearrange the formula to solve for wavelength ([tex]\( \lambda \)[/tex]):
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
2. Substitute the known values into the formula:
Plug in [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s, [tex]\( c = 299,792,458 \)[/tex] m/s, and [tex]\( E = 2 \)[/tex] eV.
[tex]\[ \lambda = \frac{(4.135667696 \times 10^{-15} \, \text{eV} \cdot \text{s}) \times (299,792,458 \, \text{m/s})}{2 \, \text{eV}} \][/tex]
3. Perform the multiplication and division:
[tex]\[ \lambda = \frac{4.135667696 \times 299,792,458}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = \frac{1,239,841,984}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = 619.9209920275184 \times 10^{-9} \, \text{m} \][/tex]
4. Convert the wavelength from meters to nanometers (1 nm = [tex]\( 10^{-9} \)[/tex] meters):
[tex]\[ \lambda = 619.9209920275184 \, \text{nm} \][/tex]
Thus, the wavelength of a photon with an energy of 2 eV is approximately:
[tex]\[ 619.92 \, \text{nm} \][/tex]
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
Where:
- [tex]\( E \)[/tex] is the energy of the photon.
- [tex]\( h \)[/tex] is Planck's constant.
- [tex]\( c \)[/tex] is the speed of light.
- [tex]\( \lambda \)[/tex] is the wavelength of the photon.
Given values:
- [tex]\( E = 2 \)[/tex] electron volts (eV)
Constants:
- Planck's constant, [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s
- Speed of light, [tex]\( c = 299,792,458 \)[/tex] m/s
Step-by-Step Solution:
1. Rearrange the formula to solve for wavelength ([tex]\( \lambda \)[/tex]):
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
2. Substitute the known values into the formula:
Plug in [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s, [tex]\( c = 299,792,458 \)[/tex] m/s, and [tex]\( E = 2 \)[/tex] eV.
[tex]\[ \lambda = \frac{(4.135667696 \times 10^{-15} \, \text{eV} \cdot \text{s}) \times (299,792,458 \, \text{m/s})}{2 \, \text{eV}} \][/tex]
3. Perform the multiplication and division:
[tex]\[ \lambda = \frac{4.135667696 \times 299,792,458}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = \frac{1,239,841,984}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = 619.9209920275184 \times 10^{-9} \, \text{m} \][/tex]
4. Convert the wavelength from meters to nanometers (1 nm = [tex]\( 10^{-9} \)[/tex] meters):
[tex]\[ \lambda = 619.9209920275184 \, \text{nm} \][/tex]
Thus, the wavelength of a photon with an energy of 2 eV is approximately:
[tex]\[ 619.92 \, \text{nm} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.