Get personalized and accurate responses to your questions with IDNLearn.com. Ask anything and receive immediate, well-informed answers from our dedicated community of experts.
Sagot :
To find the wavelength of a photon given its energy, we will use the relationship between energy and wavelength in the context of quantum mechanics. The key formula here is derived from the energy of a photon:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
Where:
- [tex]\( E \)[/tex] is the energy of the photon.
- [tex]\( h \)[/tex] is Planck's constant.
- [tex]\( c \)[/tex] is the speed of light.
- [tex]\( \lambda \)[/tex] is the wavelength of the photon.
Given values:
- [tex]\( E = 2 \)[/tex] electron volts (eV)
Constants:
- Planck's constant, [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s
- Speed of light, [tex]\( c = 299,792,458 \)[/tex] m/s
Step-by-Step Solution:
1. Rearrange the formula to solve for wavelength ([tex]\( \lambda \)[/tex]):
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
2. Substitute the known values into the formula:
Plug in [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s, [tex]\( c = 299,792,458 \)[/tex] m/s, and [tex]\( E = 2 \)[/tex] eV.
[tex]\[ \lambda = \frac{(4.135667696 \times 10^{-15} \, \text{eV} \cdot \text{s}) \times (299,792,458 \, \text{m/s})}{2 \, \text{eV}} \][/tex]
3. Perform the multiplication and division:
[tex]\[ \lambda = \frac{4.135667696 \times 299,792,458}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = \frac{1,239,841,984}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = 619.9209920275184 \times 10^{-9} \, \text{m} \][/tex]
4. Convert the wavelength from meters to nanometers (1 nm = [tex]\( 10^{-9} \)[/tex] meters):
[tex]\[ \lambda = 619.9209920275184 \, \text{nm} \][/tex]
Thus, the wavelength of a photon with an energy of 2 eV is approximately:
[tex]\[ 619.92 \, \text{nm} \][/tex]
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
Where:
- [tex]\( E \)[/tex] is the energy of the photon.
- [tex]\( h \)[/tex] is Planck's constant.
- [tex]\( c \)[/tex] is the speed of light.
- [tex]\( \lambda \)[/tex] is the wavelength of the photon.
Given values:
- [tex]\( E = 2 \)[/tex] electron volts (eV)
Constants:
- Planck's constant, [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s
- Speed of light, [tex]\( c = 299,792,458 \)[/tex] m/s
Step-by-Step Solution:
1. Rearrange the formula to solve for wavelength ([tex]\( \lambda \)[/tex]):
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
2. Substitute the known values into the formula:
Plug in [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s, [tex]\( c = 299,792,458 \)[/tex] m/s, and [tex]\( E = 2 \)[/tex] eV.
[tex]\[ \lambda = \frac{(4.135667696 \times 10^{-15} \, \text{eV} \cdot \text{s}) \times (299,792,458 \, \text{m/s})}{2 \, \text{eV}} \][/tex]
3. Perform the multiplication and division:
[tex]\[ \lambda = \frac{4.135667696 \times 299,792,458}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = \frac{1,239,841,984}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = 619.9209920275184 \times 10^{-9} \, \text{m} \][/tex]
4. Convert the wavelength from meters to nanometers (1 nm = [tex]\( 10^{-9} \)[/tex] meters):
[tex]\[ \lambda = 619.9209920275184 \, \text{nm} \][/tex]
Thus, the wavelength of a photon with an energy of 2 eV is approximately:
[tex]\[ 619.92 \, \text{nm} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.